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II. Détermination des racines d'un polynome P de H [X].

Lemme 1. Soient P(X)eH[X] et XeK; alors on a P {/1) 0 si
et seulement si X - X divise P (.X) dans H [X].

Démonstration. Evidente.

Lemme 2. Soient P (X) e H [X] et A un polynôme irréductible de

degré 2 dans K [X] ; alors, si A est le polynôme caractéristique d'un
quaternion q, on a l'alternative suivante :

a) A divise P et alors tous les conjugués a q a-1 de q sont racines de P,

b) A ne divise pas P et alors au plus un conjugué q' de q est racine de P.

Démonstration.

a) Si A divise P, il existe Pxe H [X] tel que pour tout élément a: de H, on
ait P{x) Pt (x) A (x) et le résultat 1 montre que tout quaternion
conjugué de q est racine de P. Il y en a une infinité.

b) Si A ne divise pas P, alors on a P P1 A + aX + b avec a et b dans H
non simultanément nuls.

bi) Si a 0, pour tout quaternion q de polynôme caractéristique A,

on a: P (q) b # 0.

b2) Si a ^ 0, il existe au plus une solution au problème, à savoir
-a'1 b, et pour cela il faut et il suffit que A soit le polynôme
caractéristique de — a'1 b.

Nous sommes en mesure maintenant de démontrer le résultat principal.

Théorème. Soient P un polynôme de H [X] et q un quaternion
quelconque de H. Les conditions suivantes sont équivalentes

(i) Il existe un conjugué q' de q tel que P{q') — 0.

(ii) Le polynôme caractéristique de q divise n (P) dans K [X].

(iii) Le quaternion q est racine de n (P).

Démonstration. Le polynôme Aq est dans le centre K [X] de l'anneau
H [X]. On peut donc calculer modulo Aq dans H [X] (i.e. modulo l'idéal
bilatère Aq. H [X] de H [X]).

Si Aq divise P, le théorème est évident. Supposons donc que Aq ne divise

pas P. On a P {X) aX + b mod Aq avec a, b dans H non simultanément
nuls.
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(i) => (ii): Si P (qf) 05 alors a # 0 et q' -a'1 b. Or n{P) PP

(aX+b) (äX+b) n (a) A_a-\b mod Aq.

Or -a~1b q' et Aq, Aq, donc n (P) 0 mod Aq. Donc Aq divise

n(P)d<msK[X].
(ii) => (iii) : évident.

(iii) => (i): On a n(P) (aX+b) (äX+b) modAq. Si a 0, alors

n (P) n (b) mod Aq, donc n (P) (#) n(b) ^ 0. Ceci est contraire à

l'hypothèse. Donc a ^ 0. Par suite on a, n (P) n (a) d _a_ l6 mod
Comme n(P)(q) 0, on a d_a_l6(#) 0; donc A_a_lh et ainsi
P (~a~ 1b) 0.

III. Quelques conséquences du théorème

Corollaire 1. Supposons que H soit le corps des quaternions classiques
sur le corps R des nombres réels. Alors, pour tout polynôme P de H [X]
non constant, il existe un quaternion q de H tel que P (<q) 0.

Démonstration. On peut supposer que P n'a pas de racines dans R.
Alors, d'après le lemme 1, n (P) n'a pas de facteur du premier degré dans

r m.
Soit A un polynôme irréductible de degré 2 dans R [X], divisant n (P).

Un tel A existe puisque degré n (P) 2 degré P > 2. Or on sait qu'il
existe un quaternion q tel que Aq A et le théorème nous dit qu'il existe
un conjugué q' de q tel que P(q') 0.

C'est le résultat (i) de Niven.

Corollaire 2. Soit H un corps de quaternions généralisés de centre K.
Un polynôme P de H [X] admet une infinité de racines si et seulement s yil
existe un polynôme irréductible A de degré 2 de K\X] et un quaternion q
tel que A Aq et A divise P.

La démonstration est une conséquence triviale du lemme 2 et du
théorème. Si K R, tout polynôme irréductible de degré 2 est le polynôme
caractéristique d'un quaternion q, d'où le résultat (ii) de Niven.

Corollaire 3. Soit H un corps de quaternions généralisés de centre K.
Si le polynôme P de H [X] n 'a qu 'un nombre fini de racines, celui-ci est
inférieur ou égal au degré de P.
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