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SUR LES EQUATIONS POLYNOMIALES
DANS LES QUATERNIONS

par Bernard BECK

Soit H un corps de quaternions généralisés, de centre K (voir [1]).
Le but de cet article est d’étudier les solutions dans H de ’équation

(1) P(X) = qnxn + Qn-—ixn—l + ... + o = O
oung.eH, r=0,1,..,netq, # 0.

Dans le cas ol le corps K est le corps des nombres réels et H le corps
des quaternions classiques, I. Niven [2] a démontré les résultats suivants:

(i) L’équation (1) admet toujours une solution dans H.

(i) L’équation (1) admet une infinité de solutions dans H si et seulement
siP(x) = Q) (x®—2tx+r)out,rek, t*> <r.
(i) Sile nombre de solutions de (1) est fini, celui-ci est au plus (2n— 2.

On étudie ici I’équation (1) dans le cas le plus général, en reliant les
solutions de (1) aux racines d’un polyndéme # (P) a une indéterminée a
coefficients dans K: c’est le théoréme de la partie II.

Dans la partie III, on étudie les conséquences de ce théoréme et on
montre notamment les résultats suivants:

— Si le nombre de solutions de (1) est fini, celui-ci est inférieur ou
¢gal a n.

— 11 existe un unique polyndme P unitaire de degré n a coeflicients
dans H admettant » racines 2 a 2 non conjuguées.

- L RAPPELS ET NOTATIONS
Soit H un corps de quaternions généralisés. On sait que H est un espace
vectoriel de dimension 4 sur son centre K et qu’il existe sur H un antiauto-

morphisme involutif, g+ g, tel que, quels que soient les éléments A de K
et ¢, q' de H, on ait
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4+4'=9+3d, G =733, G=q, A=2
(si la caractéristique de K est différente de 2, alors K = {ue H [ a = u},

mais cela est faux en caractéristique 2). A tout quaternion q de H, on
associe deux éléments de K

n(q) = q4 = qq, appelé la norme de q,
t(g) =q+4q, appelé la trace de g,
ainsi que le polyndme de K [X]

4,(X) = X? ¥t(Q)X +n(q),

appelé polyndme caractéristique de g. On a alors 4,(g) = 0. Citons sans |§
démonstration les résultats suivants:

Résultat 1. Deux éléments g et ¢’ de H sont conjugués (i.e. il existe

o€ H* tel que ¢’ = g go™ 1), si et seulement s’ils ont méme polynéme
caractéristique.

Résultat 2. Le polynéme 4, est irréductible dans K [X] si et seulement |
si g n’est pas dans K.

Résultat 3. Tout élément g de H qui n’est pas dans K admet une infinité
de conjugués distincts.

Ces trois résultats montrent que si ¢ n’est pas dans K, le polyndme
4, (X) a une infinité de racines dans H. Pour les autres propriétés des corps
de quaternions, voir [1]. ‘

On considére I'anneau H [X] des polyndmes 3 une indéterminée a
coefficients dans H ol I'indéterminée commute avec les coefficients. Alors -
H [X] est un K [X]-module & droite libre de rang 4; en effet, soit {q,, ..., g,}
une base du K-espace vectoriel H; tout polyndéme P de H [X] s’écrit de
manicre évidente

P(X) = gl q; F;(X) avec F;(X)eK[X].

Résultat 4. Tout polynéme P de H [X] se factorise de maniére unique
en P = P, F avec F unitaire dans K [X], P, n’étant divisible par aucun
polyndme non constant de K [X].

4

Démonstration. On écrit P (X) = Y ¢, F;(X) comme précédemment

i=1

et on prend pour Fle P.G.C.D. des F,. []



— 195 —

Résultat 5. H [X] est un K [X]-module a droite euclidien, i.e. pour tout
polyndme P de H [X] et pour tout polyndme F de K [X], il existe deux
polynémes Q et R de H [X] tels que degré R < degré Fet P = QF + R.
. 4
Démonstration. On écrit P(X) = ) ¢;F;(X) et on effectue la
i=1
division euclidienne des F; par F. []

Etant donné un polynéme P (X) = ) ¢, X" dans H[X], on pose
r=0 -

n(p) =PP= Y qq,Xx".

0<r, s<n

Résultat 6. Le polynéme » (P) est un élément de K [X].

2n
Démonstration. Onan(P) = > o, X*
1=0
et
al== 2: qus =:al'+ E; t(qrqg’
1=r, s<=n 0=r<s=n
r+s=1 r+s=1
ou
0 si [ est impair
a = . .
n(q,) silest pair

Donc oy eK. [
Définissons a présent les racines d’un polyndme de H [X]. Tout élément
P(X) = ) gq,X" de H[X] peut étre considéré comme une fonction

r=0
n

sur H en posant P (x) = ) gq,x" pour tout x dans H, la variable étant
- r=0 .

toujours a droite des coefficients. La multiplication sur H [X] ne définit pas
une multiplication de fonctions au sens habituel; toutefois, si Pe H [X] et
si Fe K [X], alors, pour tout élément x de H, on a

P.F(x) = P(x)F(x).

(On peut traduire cela en disant que H [X] est canoniquement isomorphe

en tant que K [X]-module & droite & I’ensemble des fonctions polynémes
sur H a variable a droite.)

On dit qu’un quaternion x est racine du polyndéme P si P (x) = 0.
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