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SUR LES ÉQUATIONS POLYNOMIALES
DANS LES QUATERNIONS

par Bernard Beck

Soit H un corps de quaternions généralisés, de centre (voir [1]).

Le but de cet article est d'étudier les solutions dans H de l'équation

(1) P(x) q„xn +qx""1+ + 0

où qre H, r 0,1,netq„#0.

Dans le cas où le corps Kest le corps des nombres réels et H le corps

des quaternions classiques, I. Niven [2] a démontré les résultats suivants:

(i) L'équation (1) admet toujours une solution dans H.

(ii) L'équation (1) admet une infinité de solutions dans H si et seulement

siP(x) Q(x) (x2~2tx+r)où t, eK, t2

(iii) Si le nombre de solutions de (1) est fini, celui-ci est au plus l)2.

On étudie ici l'équation (1) dans le cas le plus général, en reliant les

solutions de (1) aux racines d'un polynôme n(P) à une indéterminée à

coefficients dans K:c'est le théorème de la partie II.
Dans la partie III, on étudie les conséquences de ce théorème et on

montre notamment les résultats suivants :

— Si le nombre de solutions de (1) est fini, celui-ci est inférieur ou
égal à n.

— Il existe un unique polynôme P unitaire de degré n à coefficients

dans H admettant n racines 2 à 2 non conjuguées.

I. Rappels et notations\

Soit H un corps de quaternions généralisés. On sait que H est un espace
vectoriel de dimension 4 sur son centre K et qu'il existe sur H un antiauto-
'rorphisme involutif, q -> q, tel que, quels que soient les éléments Â de K
et q, q'de H, on ait
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q+q'=q+q, qq'=q'-q, q=q,
(si la caractéristique de K est différente de 2, alors
mais cela est faux en caractéristique 2). A tout quaternion q de on
associe deux éléments de K

n(q)qq — qq,appelé la norme de q,
t q+ q,appeléla trace de q,

ainsi que le polynôme de K [A]

Aq(X)X2 -t(q)X + n(q),
appelé polynôme caractéristique de q. On a alors 0. Citons sans,
démonstration les résultats suivants :

Résultat 1. Deux éléments q et q' de H sont conjugués (i.e. il existe
<r e H* tel que q aqcr1), si et seulement s'ils ont même polynôme
caractéristique.

Résultat 2. Le polynôme Aq est irréductible dans K [X] si et seulement
si q n'est pas dans K.

Résultat 3. Tout élément q de H qui n'est pas dans K admet une infinité
de conjugués distincts.

Ces trois résultats montrent que si q n'est pas dans le polynôme
Aq (X)a une infinité de racines dans H. Pour les autres propriétés des corps
de quaternions, voir [1].

On considère l'anneau H[X] des polynômes à une indéterminée à
coefficients dans H où l'indéterminée commute avec les coefficients. Alors
H [X] est un K [X]-module à droite libre de rang 4; en effet, soit {qu q4}
une base du X-espace vectoriel H; tout polynôme P de H[X] s'écrit de
manière évidente

4

P(X)E qtF,(X) avec Fi(X)eK[X}.i_l
Résultat 4. Tout polynôme P de H[X]sefactorise de manière unique
P ~Pi P avec F unitaire dans K [X], Pj n'étant divisible par aucun

polynôme non constant de K [X].
4

Démonstration. On écrit P (X) ^ qt Ft (X) comme précédemment
i= 1

et on prend pour F le P.G.C.D. des Ft.



— 195 —

Résultat 5. H [X] est un K [X]-module à droite euclidien, i.e. pour tout
polynôme P de H [X] et pour tout polynôme F de K [X], il existe deux

polynômes Q et R de H [X] tels que degré R < degré F et P QF + R.

4
Démonstration. On écrit P(X) £ qiFi{X) et on effectue la

i= 1

division euclidienne des par F.
n

Etant donné un polynôme P X) £ qr X" dans H [X], on pose
r 0

Pffl Ê «fIret
n(p)=P-P= £ qrqsX'+\

0-^r. s^n

Résultat 6. Le polynôme n (P) est un élément de K [X],

2n

Démonstration. On a « (P) az X*
z=o

et

2] QrQs ~ al S
l^r. Q^ir <s*^n

r+s=l r+s=l
OÙ

f 0 si / est impair
a s

l n(ql/2) si/est pair
Donc a, e X.

Définissons à présent les racines d'un polynôme de i/ [X], Tout élément
«

^ W X Qr Xr de if [X] peut être considéré comme une fonction
r - 0

n

sur H en posant P (x) £ qr xr pour tout x dans H, variable étant
r 0

toujours à droite des coefficients. La multiplication sur [X] ne définit pas
une multiplication de fonctions au sens habituel; toutefois, [X] et
si Fe K[X], alors, pour tout élément x de H, on a

(On peut traduire cela en disant que H [X] est canoniquement isomorphe
en tant que K [X]-module à droite à l'ensemble des fonctions polynômes
sur H à variable à droite.)

On dit qu'un quaternion x est racine du polynôme P si E (x) 0.
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