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SUR LES EQUATIONS POLYNOMIALES
DANS LES QUATERNIONS

par Bernard BECK

Soit H un corps de quaternions généralisés, de centre K (voir [1]).
Le but de cet article est d’étudier les solutions dans H de ’équation

(1) P(X) = qnxn + Qn-—ixn—l + ... + o = O
oung.eH, r=0,1,..,netq, # 0.

Dans le cas ol le corps K est le corps des nombres réels et H le corps
des quaternions classiques, I. Niven [2] a démontré les résultats suivants:

(i) L’équation (1) admet toujours une solution dans H.

(i) L’équation (1) admet une infinité de solutions dans H si et seulement
siP(x) = Q) (x®—2tx+r)out,rek, t*> <r.
(i) Sile nombre de solutions de (1) est fini, celui-ci est au plus (2n— 2.

On étudie ici I’équation (1) dans le cas le plus général, en reliant les
solutions de (1) aux racines d’un polyndéme # (P) a une indéterminée a
coefficients dans K: c’est le théoréme de la partie II.

Dans la partie III, on étudie les conséquences de ce théoréme et on
montre notamment les résultats suivants:

— Si le nombre de solutions de (1) est fini, celui-ci est inférieur ou
¢gal a n.

— 11 existe un unique polyndme P unitaire de degré n a coeflicients
dans H admettant » racines 2 a 2 non conjuguées.

- L RAPPELS ET NOTATIONS
Soit H un corps de quaternions généralisés. On sait que H est un espace
vectoriel de dimension 4 sur son centre K et qu’il existe sur H un antiauto-

morphisme involutif, g+ g, tel que, quels que soient les éléments A de K
et ¢, q' de H, on ait
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4+4'=9+3d, G =733, G=q, A=2
(si la caractéristique de K est différente de 2, alors K = {ue H [ a = u},

mais cela est faux en caractéristique 2). A tout quaternion q de H, on
associe deux éléments de K

n(q) = q4 = qq, appelé la norme de q,
t(g) =q+4q, appelé la trace de g,
ainsi que le polyndme de K [X]

4,(X) = X? ¥t(Q)X +n(q),

appelé polyndme caractéristique de g. On a alors 4,(g) = 0. Citons sans |§
démonstration les résultats suivants:

Résultat 1. Deux éléments g et ¢’ de H sont conjugués (i.e. il existe

o€ H* tel que ¢’ = g go™ 1), si et seulement s’ils ont méme polynéme
caractéristique.

Résultat 2. Le polynéme 4, est irréductible dans K [X] si et seulement |
si g n’est pas dans K.

Résultat 3. Tout élément g de H qui n’est pas dans K admet une infinité
de conjugués distincts.

Ces trois résultats montrent que si ¢ n’est pas dans K, le polyndme
4, (X) a une infinité de racines dans H. Pour les autres propriétés des corps
de quaternions, voir [1]. ‘

On considére I'anneau H [X] des polyndmes 3 une indéterminée a
coefficients dans H ol I'indéterminée commute avec les coefficients. Alors -
H [X] est un K [X]-module & droite libre de rang 4; en effet, soit {q,, ..., g,}
une base du K-espace vectoriel H; tout polyndéme P de H [X] s’écrit de
manicre évidente

P(X) = gl q; F;(X) avec F;(X)eK[X].

Résultat 4. Tout polynéme P de H [X] se factorise de maniére unique
en P = P, F avec F unitaire dans K [X], P, n’étant divisible par aucun
polyndme non constant de K [X].

4

Démonstration. On écrit P (X) = Y ¢, F;(X) comme précédemment

i=1

et on prend pour Fle P.G.C.D. des F,. []
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Résultat 5. H [X] est un K [X]-module a droite euclidien, i.e. pour tout
polyndme P de H [X] et pour tout polyndme F de K [X], il existe deux
polynémes Q et R de H [X] tels que degré R < degré Fet P = QF + R.
. 4
Démonstration. On écrit P(X) = ) ¢;F;(X) et on effectue la
i=1
division euclidienne des F; par F. []

Etant donné un polynéme P (X) = ) ¢, X" dans H[X], on pose
r=0 -

n(p) =PP= Y qq,Xx".

0<r, s<n

Résultat 6. Le polynéme » (P) est un élément de K [X].

2n
Démonstration. Onan(P) = > o, X*
1=0
et
al== 2: qus =:al'+ E; t(qrqg’
1=r, s<=n 0=r<s=n
r+s=1 r+s=1
ou
0 si [ est impair
a = . .
n(q,) silest pair

Donc oy eK. [
Définissons a présent les racines d’un polyndme de H [X]. Tout élément
P(X) = ) gq,X" de H[X] peut étre considéré comme une fonction

r=0
n

sur H en posant P (x) = ) gq,x" pour tout x dans H, la variable étant
- r=0 .

toujours a droite des coefficients. La multiplication sur H [X] ne définit pas
une multiplication de fonctions au sens habituel; toutefois, si Pe H [X] et
si Fe K [X], alors, pour tout élément x de H, on a

P.F(x) = P(x)F(x).

(On peut traduire cela en disant que H [X] est canoniquement isomorphe

en tant que K [X]-module & droite & I’ensemble des fonctions polynémes
sur H a variable a droite.)

On dit qu’un quaternion x est racine du polyndéme P si P (x) = 0.
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II. DETERMINATION DES RACINES D’UN POLYNOME P DE H [X].

LeMME 1. Soient P(X)e H[X] et AeK; alorsona P(A) =0 si
et seulement si X — A divise P(X) dans H [X]. |

Démonstration. Evidente.

LEMME 2. Soient P(X)e H[X] et A un polynéme irréductible de
degré 2 dans KI[X]; alors, si A est le polynéme caractéristique d’un
quaternion q, on a l’alternative suivante :

a) 4 divise P et alors tous les conjugués o qo~' de q sont racines de P,

b) 4 ne divise pas P et alors au plus un conjugué q' de q est racine de P. B

Démonstration.

a) Si 4 divise P, il existe P, € H [X] tel que pour tout élément x de H, on [
ait P(x) = Py (x) 4 (x) et le résultat 1 montre que tout quaternion
conjugué de g est racine de P. Il y en a une infinité.

b) Si 4 ne divise pas P, alorsona P = P; A + aX + b avec aet b dans H "
non simultanément nuls.

'

b;) Si a = 0, pour tout quaternion ¢ de polyndme caractéristique 4,
ona:P(q) =b # 0.

b,) Si a # 0, il existe au plus une solution au probléme, & savoir
—a~ ' b, et pour cela il faut et il suffit que 4 soit le polyndme
caractéristique de —a~1b. [

Nous sommes en mesure maintenant de démontrer le résultat principal.

THEOREME. Soient P un polynome de H[X] et q un quaternion’
quelconque de H. Les conditions suivantes sont équivalentes :.
(1) 1l existe un conjugué q' de q tel que P(q") = O.
(ii) Le polynome caractéristique de q divise n(P) dans K [X].

(iii) Le quaternion q est racine de n (P).

Démonstration. Le polyndme A4, est dans le centre K [X] de I’anneau
H [X]. On peut donc calculer modulo 4, dans H [X] (i.e. modulo I'idéal
bilatére 4, . H [X] de H [X]).

Si 4, divise P, le théoréme est évident. Supposons donc que 4, ne divise
pas P. On a P (X) = aX + b mod 4, avec a, b dans H non simultanément
nuls. 3




— 197 —

(i) = (ii): SiP(g") =0, alorsa # O0Oetg’ = —a~'b. Or n(P) = PP
= (aX+b) (@X+b) = n(a) 4_,-1, mod 4,.

Or —a~'b =gq' et 4, = 4,, donc n(P) = 0 mod 4,. Donc 4, divise
n(P) dans K [X].

(i) = (iii): évident.

(iii) = (i): On a n(P) = (aX+b)(aX+b)mod4, Si a =0, alors
n(P) = n(b) mod 4, donc n(P)(q) = n(b) # 0. Ceci est contraire a
Phypothése. Donc a # 0. Par suite on an (P) = n(a)4_, .4, mod 4,.
Comme n(P)(q) =0,ona 4__,_4,(q) = 0; donc 4___;, = 4, et ainsi
P(—a 'b) = 0. O

III. QUELQUES CONSEQUENCES DU THEOREME

COROLLAIRE 1. Supposons que H soit le corps des quaternions classiques
sur le corps R des nombres réels. Alors, pour tout polynome P de H [X]
non constant, il existe un quaternion q de H tel que P (q) = O.

Démonstration. On peut supposer que P n’a pas de racines dans R.
Alors, d’aprés le lemme 1, n (P) n’a pas de facteur du premier degré dans
R [X].

Soit 4 un polyndme irréductible de degré 2 dans R [X], divisant #n (P).
Un tel 4 existe puisque degré n(P) = 2 degré P > 2. Or on sait qu’il
existe un quaternion ¢ tel que 4, = A4 et le théoréme nous dit qu’il existe
un conjugué g’ de g tel que P(¢’) = 0. [

C’est le résultat (i) de Niven.

COROLLAIRE 2. Soit H un corps de quaternions généralisés de centre K.
Un polynéme P de H [X] admet une infinité de racines si et seulement s il
existe un polynome irréductible A de degré 2 de K [X] et un quaternion q
telque A = A, et A divise P.

La démonstration est une conséquence triviale du lemme 2 et du
théoréme. Si K = R, tout polyndme irréductible de degré 2 est le polynéme -
caractéristique d’un quaternion g, d’ou le résultat (ii) de Niven.

COROLLAIRE 3. Soit H un corps de quaternions généralisés de centre K.
5i le polynéme P de H[X] n’a qu’un nombre Jini de racines, celui-ci est
inférieur ou égal au degré de P.

L’Enseignement mathém.. t. XXV. fasc. 3-4. an




Démonstration. D’aprés le théoréme, & tout quaternion g tel que 4,
divise n (P), correspond un conjugué ¢’ de q tel que P (¢”) = 0. Comme P
n’a qu’un nombre fini de racines, ¢’ est unique d’aprés le lemme 2. Comme
degré n (P) = 2 degré P et degré 4, = 2, on constate que P a au plus
degré P racines distinctes et celles-ci sont deux a deux non conjuguées. []

Définition. Soit P un polynéme non nul de H [X] n’ayant qu’un nombre
fini de racines, et soit ¢ un élément de H. On définit la multlphclte de ¢
par rapport a P (notée M, (¢)) de la maniére suivante:

M) 0 si P(q) #0,
M= Max {keN |4 divise n(P)} si P(q) =

COROLLAIRE 3'. Si PeH[X] n’a qu'un nombre fini de racines, |
91> >4, € n = degré P, alors ,

'Zl M P (ql) < n
Si, de plus, K =R et H estle corps des quaternions classiques, alors

Z M,(q) = n et on peut dire que P a exactement n racines (avec

multiplicités ).

Démonstration : évidente.

On a déterminé I’ensemble des racines d’un polyndme ainsi que leurs
multiplicités. Il reste & déterminer les polyndmes ayant un ensemble de
racines données avec leurs multiplicités.

PROPOSITION. Soient H un corps de quaternions généralisés de centre K,
d1s ---» 4 des quaternions deux a deux non conjugués, ni,..,'n, des entiers

>1 tels que Y. n; = n. On suppose, de plus, que les q; ne sont pas
i=1 .

dans K, ce qui ne restreint pas la généralité, gridce au lemme 1.

a) Si pour tout i, 1 <<i<r, ona n; =1, alors il existe un unique
polynéme unitaire de degré n de H [X], qui ait pour seules racines les q;
avec 1 <i<r. o

b) S’il existe un i, 1 <i <r, tel que n; > 1, alors il existe une infinité
de polynomes unitaires P de H [X] de degré n, tels que P ait pour seules
racines les q;, 1 <i < r, avec pour multiplicité n,.
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Démonstration.

a) Unicité. Si P et P, sont deux tels polyndmes unitaires, P; — P, est
un polynéme de degré inférieur ou égal a2 n — 1, qui admet » racines
deux 2 deux non conjugués, g, ..., gp. SiPy — P, # 0,4, ® ... ® 4,.
divise n (P, —P,). Donc degré n (P, —P,) > 2n. Or degré n (P,—P,)
<2(n—1),donc Py = P,.

Existence. Remarquons que dans ce cas on a n = r. On procéde par
récurrence sur l'entier n. Le cas n = 1 étant trivial, soit Q un polynome
unitaire de degré m — 1 admettant gy, ..., ¢,—y comme seules racines,
les ¢;1 <i<n— 1 étant deux & deux non conjugués. Alors si g, n’est
conjugué a aucun des ¢, 1<i<n—1, on a Q(q,) # 0. Posons

u= 0 ¢ Q@)"
et

P(X) = (X-u)QX).

Par définition de la multiplication dans H[X] on a P(q) = Q(q) " ¢
— u Q (g) pour tout quaternion q et I’on en déduit:

P(q)—Opourl <n-1
et P(q,) = Q(qn) 4, — (Q(a,) 9. Q (3,)” 1) Q (g, = 0.

Ainsi P est un polynéme unitaire de degré » qui admet g¢,, ..., g, comme
racines. Montrons que P n’a pas d’autres racines. D’apreés la partie (ii) du
théoréme, 4,, divise n (P) pour tout 7, 1 <<i <n; comme degré n (P) =

on a

n(P) = f[ 4, .

Si g est une racine de P, 4, divise n (P) d’aprés le théoréme et donc il existe
i, 1 <i<ntel que q et g; soient conjugués. Si ¢ # ¢;, on sait d’apres le
lemme 2 que 4,, divise P mais alors A;i divise n (P) donc il exite j # i
tel que 4 G = 4,. donc g; et g; sont conjugués, ce qui est contraire a ’hypo-
thése. On a donc nécessairement g = ¢;. Le polynome P ainsi construit
n’a pas d’autres racines que les g;, 1 <<i <n

b) On généralise tout d’abord la définition de la multiplicité d’une racine
d’un polynéme: Si Fe K [X] et g € H, posons

mp(q) = max {keN|(X —¢)* divise F dans K(q)[X]}.

Si P est un polyndme quelconque de H [X], on écrit P = P, F comme
en I, Résultat 4. Alors, pour tout quaternion g de H, on définit la
multiplicité de ¢ par rapport 3 P comme étant I’entier
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Mp(q) = Mp,-(q) + mp(q).

On constate que ceci est une bonne généralisation de la définition
précédente.

Il faut alors démontrer deux résultats intermédiaires.

LEMME 3. Soient Pe H [X] et ue H. Onpose P,(X) = (X—u) P (X).
Alors : ‘

@) n(P,) = n(P)4,; |

(i) si q est un quaternion tel que P(q) # 0 et P,(g) =0, ona
u=P@qgP(@ "

(i) si g n’est pas conjugué de u, ona Mp(q) = Mp, (q).

Démonstration. (i) et (ii) sont évidents. Pour (iii), on constate que si q |
n’est pas conjugué de u, alors (P (g) = 0) <« (P,(q) = 0), d’oui le résultat-
cherché d’aprés (i) et la définition de la multiplicité. [

LemMME 4. Soit un polynéme P de H [X], admettant une racine q ¢ K |8
dans H, telle que A, ne divise pas P (i.e. P(q") # O pour tout conjugué q’
de q distinct de q). Alors :

() si q" estun conjugué de q distinct de q, la quantité P (q’) q’ P(q’)~"
= q est une constante ne dépendant que de P et de q;

(i) si u est un conjugué de q distinct de q, alors Mp (q) = Mp(q)
+ 1.

Démonstration. (i) Posons u; = P(q;)q;P(g;)"',i=1,2,0u q, et q,
sont deux conjugués de g distincts de g. Alors P,, admet g et g; comme
racines. Donc, d’aprés le lemme 2, on a P, (¢') = P,,(q") = 0 pour tout
conjugué g’ de g, mais alors u; P(q’) = u, P(q’). D’ou l’on tire Uy = Uy |
en prenant ¢’ # gq. |

(if) Si u est un conjugué de ¢ distinct de g, alors P, (¢") # 0 pour tout
conjugué g’ de g, distinct de g. Comme, d’autre part,n (P,) = n (P) 4,
= n (P)4, (Lemme 3 (1)), on a Mp (q) = Mp(g) + 1, d’aprés la défini-
tion de la multiplicité. - [

~

Le quaternion g n’étant pas dans X il a une infinité de conjugués u # q.
La partie a) de la proposition et les lemmes 3 et 4 permettent alors d’achever
la démonstration de b) par récurrence.
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