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SUR LES ÉQUATIONS POLYNOMIALES
DANS LES QUATERNIONS

par Bernard Beck

Soit H un corps de quaternions généralisés, de centre (voir [1]).

Le but de cet article est d'étudier les solutions dans H de l'équation

(1) P(x) q„xn +qx""1+ + 0

où qre H, r 0,1,netq„#0.

Dans le cas où le corps Kest le corps des nombres réels et H le corps

des quaternions classiques, I. Niven [2] a démontré les résultats suivants:

(i) L'équation (1) admet toujours une solution dans H.

(ii) L'équation (1) admet une infinité de solutions dans H si et seulement

siP(x) Q(x) (x2~2tx+r)où t, eK, t2

(iii) Si le nombre de solutions de (1) est fini, celui-ci est au plus l)2.

On étudie ici l'équation (1) dans le cas le plus général, en reliant les

solutions de (1) aux racines d'un polynôme n(P) à une indéterminée à

coefficients dans K:c'est le théorème de la partie II.
Dans la partie III, on étudie les conséquences de ce théorème et on

montre notamment les résultats suivants :

— Si le nombre de solutions de (1) est fini, celui-ci est inférieur ou
égal à n.

— Il existe un unique polynôme P unitaire de degré n à coefficients

dans H admettant n racines 2 à 2 non conjuguées.

I. Rappels et notations\

Soit H un corps de quaternions généralisés. On sait que H est un espace
vectoriel de dimension 4 sur son centre K et qu'il existe sur H un antiauto-
'rorphisme involutif, q -> q, tel que, quels que soient les éléments Â de K
et q, q'de H, on ait
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q+q'=q+q, qq'=q'-q, q=q,
(si la caractéristique de K est différente de 2, alors
mais cela est faux en caractéristique 2). A tout quaternion q de on
associe deux éléments de K

n(q)qq — qq,appelé la norme de q,
t q+ q,appeléla trace de q,

ainsi que le polynôme de K [A]

Aq(X)X2 -t(q)X + n(q),
appelé polynôme caractéristique de q. On a alors 0. Citons sans,
démonstration les résultats suivants :

Résultat 1. Deux éléments q et q' de H sont conjugués (i.e. il existe
<r e H* tel que q aqcr1), si et seulement s'ils ont même polynôme
caractéristique.

Résultat 2. Le polynôme Aq est irréductible dans K [X] si et seulement
si q n'est pas dans K.

Résultat 3. Tout élément q de H qui n'est pas dans K admet une infinité
de conjugués distincts.

Ces trois résultats montrent que si q n'est pas dans le polynôme
Aq (X)a une infinité de racines dans H. Pour les autres propriétés des corps
de quaternions, voir [1].

On considère l'anneau H[X] des polynômes à une indéterminée à
coefficients dans H où l'indéterminée commute avec les coefficients. Alors
H [X] est un K [X]-module à droite libre de rang 4; en effet, soit {qu q4}
une base du X-espace vectoriel H; tout polynôme P de H[X] s'écrit de
manière évidente

4

P(X)E qtF,(X) avec Fi(X)eK[X}.i_l
Résultat 4. Tout polynôme P de H[X]sefactorise de manière unique
P ~Pi P avec F unitaire dans K [X], Pj n'étant divisible par aucun

polynôme non constant de K [X].
4

Démonstration. On écrit P (X) ^ qt Ft (X) comme précédemment
i= 1

et on prend pour F le P.G.C.D. des Ft.
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Résultat 5. H [X] est un K [X]-module à droite euclidien, i.e. pour tout
polynôme P de H [X] et pour tout polynôme F de K [X], il existe deux

polynômes Q et R de H [X] tels que degré R < degré F et P QF + R.

4
Démonstration. On écrit P(X) £ qiFi{X) et on effectue la

i= 1

division euclidienne des par F.
n

Etant donné un polynôme P X) £ qr X" dans H [X], on pose
r 0

Pffl Ê «fIret
n(p)=P-P= £ qrqsX'+\

0-^r. s^n

Résultat 6. Le polynôme n (P) est un élément de K [X],

2n

Démonstration. On a « (P) az X*
z=o

et

2] QrQs ~ al S
l^r. Q^ir <s*^n

r+s=l r+s=l
OÙ

f 0 si / est impair
a s

l n(ql/2) si/est pair
Donc a, e X.

Définissons à présent les racines d'un polynôme de i/ [X], Tout élément
«

^ W X Qr Xr de if [X] peut être considéré comme une fonction
r - 0

n

sur H en posant P (x) £ qr xr pour tout x dans H, variable étant
r 0

toujours à droite des coefficients. La multiplication sur [X] ne définit pas
une multiplication de fonctions au sens habituel; toutefois, [X] et
si Fe K[X], alors, pour tout élément x de H, on a

(On peut traduire cela en disant que H [X] est canoniquement isomorphe
en tant que K [X]-module à droite à l'ensemble des fonctions polynômes
sur H à variable à droite.)

On dit qu'un quaternion x est racine du polynôme P si E (x) 0.



— 196 —

II. Détermination des racines d'un polynome P de H [X].

Lemme 1. Soient P(X)eH[X] et XeK; alors on a P {/1) 0 si
et seulement si X - X divise P (.X) dans H [X].

Démonstration. Evidente.

Lemme 2. Soient P (X) e H [X] et A un polynôme irréductible de

degré 2 dans K [X] ; alors, si A est le polynôme caractéristique d'un
quaternion q, on a l'alternative suivante :

a) A divise P et alors tous les conjugués a q a-1 de q sont racines de P,

b) A ne divise pas P et alors au plus un conjugué q' de q est racine de P.

Démonstration.

a) Si A divise P, il existe Pxe H [X] tel que pour tout élément a: de H, on
ait P{x) Pt (x) A (x) et le résultat 1 montre que tout quaternion
conjugué de q est racine de P. Il y en a une infinité.

b) Si A ne divise pas P, alors on a P P1 A + aX + b avec a et b dans H
non simultanément nuls.

bi) Si a 0, pour tout quaternion q de polynôme caractéristique A,

on a: P (q) b # 0.

b2) Si a ^ 0, il existe au plus une solution au problème, à savoir
-a'1 b, et pour cela il faut et il suffit que A soit le polynôme
caractéristique de — a'1 b.

Nous sommes en mesure maintenant de démontrer le résultat principal.

Théorème. Soient P un polynôme de H [X] et q un quaternion
quelconque de H. Les conditions suivantes sont équivalentes

(i) Il existe un conjugué q' de q tel que P{q') — 0.

(ii) Le polynôme caractéristique de q divise n (P) dans K [X].

(iii) Le quaternion q est racine de n (P).

Démonstration. Le polynôme Aq est dans le centre K [X] de l'anneau
H [X]. On peut donc calculer modulo Aq dans H [X] (i.e. modulo l'idéal
bilatère Aq. H [X] de H [X]).

Si Aq divise P, le théorème est évident. Supposons donc que Aq ne divise

pas P. On a P {X) aX + b mod Aq avec a, b dans H non simultanément
nuls.
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(i) => (ii): Si P (qf) 05 alors a # 0 et q' -a'1 b. Or n{P) PP

(aX+b) (äX+b) n (a) A_a-\b mod Aq.

Or -a~1b q' et Aq, Aq, donc n (P) 0 mod Aq. Donc Aq divise

n(P)d<msK[X].
(ii) => (iii) : évident.

(iii) => (i): On a n(P) (aX+b) (äX+b) modAq. Si a 0, alors

n (P) n (b) mod Aq, donc n (P) (#) n(b) ^ 0. Ceci est contraire à

l'hypothèse. Donc a ^ 0. Par suite on a, n (P) n (a) d _a_ l6 mod
Comme n(P)(q) 0, on a d_a_l6(#) 0; donc A_a_lh et ainsi
P (~a~ 1b) 0.

III. Quelques conséquences du théorème

Corollaire 1. Supposons que H soit le corps des quaternions classiques
sur le corps R des nombres réels. Alors, pour tout polynôme P de H [X]
non constant, il existe un quaternion q de H tel que P (<q) 0.

Démonstration. On peut supposer que P n'a pas de racines dans R.
Alors, d'après le lemme 1, n (P) n'a pas de facteur du premier degré dans

r m.
Soit A un polynôme irréductible de degré 2 dans R [X], divisant n (P).

Un tel A existe puisque degré n (P) 2 degré P > 2. Or on sait qu'il
existe un quaternion q tel que Aq A et le théorème nous dit qu'il existe
un conjugué q' de q tel que P(q') 0.

C'est le résultat (i) de Niven.

Corollaire 2. Soit H un corps de quaternions généralisés de centre K.
Un polynôme P de H [X] admet une infinité de racines si et seulement s yil
existe un polynôme irréductible A de degré 2 de K\X] et un quaternion q
tel que A Aq et A divise P.

La démonstration est une conséquence triviale du lemme 2 et du
théorème. Si K R, tout polynôme irréductible de degré 2 est le polynôme
caractéristique d'un quaternion q, d'où le résultat (ii) de Niven.

Corollaire 3. Soit H un corps de quaternions généralisés de centre K.
Si le polynôme P de H [X] n 'a qu 'un nombre fini de racines, celui-ci est
inférieur ou égal au degré de P.

L'Enseignement mathém.. t. XXV. fasc. 3-4.
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Démonstration. D'après le théorème, à tout quaternion tel que Aq
divise n (P), correspond un conjugué q' de q tel que P(q') 0. Comme
n'a qu'un nombre fini de racines, q' est unique d'après le lemme 2. Comme
degré n P)2 degré P et degré Aq 2, on constate que a au plus
degré Pracines distinctes et celles-ci sont deux à deux non conjuguées.

Définition. Soit P un polynôme non nul de H [X] n'ayant qu'un nombre
fini de racines, et soit q un élément de H. On définit la multiplicité de q
par rapport à P (notée MP (q)) de la manière suivante :

«„(«M 0"f(,)"0,'[ Max {keN \Aq divise n{Pj) si P(q) 0.

Corollaire 3'. Si P g H [X\ n 'a qu 'un nombre fini de racines,
ql9...,qr, et n degré P, alors

£ Mp(qi)<n
i= 1

Si, de plus, K R et H est le corps des quaternions classiques, alors
r

Z Mp(qi) n et on peut dire que P a exactement n racines (avec
i 1

multiplicités

Démonstration : évidente.

On a déterminé l'ensemble des racines d'un polynôme ainsi que leurs
multiplicités. Il reste à déterminer les polynômes ayant un ensemble de
racines données avec leurs multiplicités.

Proposition. Soient H un corps de quaternions généralisés de centre K,

qu...,qr des quaternions deux à deux non conjugués, nu ...jnr des entiers
r

>1 tels que nt n. On suppose, de plus, que les qt ne sont pas
i= i

dans K, ce qui ne restreint pas la généralité, grâce au lemme 1.

a) Si pour tout i, 1 < i < r, on a nt 1, alors il existe un unique
polynôme unitaire de degré n de H [X], qui ait pour seules racines les qt
avec 1 < i < r.

b) S'il existe un i, 1 < i < r, tel que nt > 1, alors il existe une infinité
de polynômes unitaires P de H [X] de degré n, tels que P ait pour seules

racines les qh 1 < i < r, avec pour multiplicité n{.
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Démonstration.

a) Unicité.Si P±et P2 sont deux tels polynômes unitaires, Px - P2 est

un polynôme de degré inférieur ou égal à 1, qui admet n racines

deux à deux non conjugués, qt,..., qn. Si Pt - ¥= 0, An ® ®
divise n(P1-P2). Donc degré n(Px-P2)> Or degré (Px-P2)
< 2 (n —1), donc Pt P2.

Existence. Remarquons que dans ce cas on a On procède par
récurrence sur l'entier n. Le cas n —1 étant trivial, soit un polynôme

unitaire de degré n — 1 admettant comme seules racines,

les qt 1 < i < n -1 étant deux à deux non conjugués. Alors si q„ n'est

conjugué à aucun des qh 1 <i< n —1, on a Q (q„) # 0. Posons

u Q(q„)-q„-
et

P(X) (X-u)ô(Z).
Par définition de la multiplication dans H [X] on a. P (q) Q (q) • q

- u Q(q)pour tout quaternion q et l'on en déduit:

P(qd — 0 pour 1 < < — 1

et P (qn) Q (qn) In ~ Q(in) <ln Q (in)"^ ô fe)
Ainsi P est un polynôme unitaire de degré n qui admet qu qn comme
racines. Montrons que P n'a pas d'autres racines. D'après la partie (ii) du

théorème, Aq. divise n (P) pour tout /, 1 < i < n; comme degré n (P) 2n,

on a n

n (P) n
i= 1

Si q est une racine de P, Aq divise n (P) d'après le théorème et donc il existe

/, 1 < i < « tel que q et qt soient conjugués. Si # ^ on sait d'après le

lemme 2 que Aq. divise P mais alors Aqi divise n (P) donc il exite j ^ *

tel que Aq. Aqi donc qt et qj sont conjugués, ce qui est contraire à l'hypothèse.

On a donc nécessairement q qt. Le polynôme P ainsi construit
n'a pas d'autres racines que les qt, 1 < / < n.

b) On généralise tout d'abord la définition de la multiplicité d'une racine
d'un polynôme: Si Fe K [X] et qe H, posons

mF (q) max {k e N | (X — q)k divise F dans K (q) [2f]}

Si P est un polynôme quelconque de H [X], on écrit P Px F comme
en I, Résultat 4. Alors, pour tout quaternion q de PT, on définit la
multiplicité de q par rapport à P comme étant l'entier
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MP (q)MPl • + mF(q)

On constate que ceci est une bonne généralisation de la définition
précédente.

Il faut alors démontrer deux résultats intermédiaires.

Lemme 3. Soient PeH[X] et ueH. On pose PU(X) (X— u)P(X).
Alors

(i) n(Pu) n (P) Au;

(ii) si q est un quaternion tel que P {q) ^ 0 et Pu (q) 0, on a
u P{q)qP{q)~1\

(iii) si q n 'est pas conjugué de u, on a MP (q) MPu (q).

Démonstration. (i) et (ii) sont évidents. Pour (iii), on constate que si q
n'est pas conjugué de u, alors (P {q) 0) (PM (q) 0), d'où le résultat
cherché d'après (i) et la définition de la multiplicité.

Lemme 4. Soit un polynôme P de H [X], admettant une racine q $ K
dans H, telle que Aq ne divisepas P (i.e. P {q') # 0 pour tout conjugué q'
de q distinct de q). Alors:

(i) si q' est un conjugué de q distinct de q, la quantité P (qr) q' P^q')'1

q est une constante ne dépendant que de P et de q ;

(ii) si u est un conjugué de q distinct de q, alors MPu {q) MP {q)
+ 1.

Démonstration, (i) Posons ut P (qt) qtP (qi)'1, i 1, 2, où q1 et q2
sont deux conjugués de q distincts de q. Alors Pu. admet q et qt comme
racines. Donc, d'après le lemme 2, on a PU1 (q') PU2 {q') 0 pour tout
conjugué q' de q, mais alors P (q') u2P (qO- D'où l'on tire u± u2

en prenant q' ^ q.

(ii) Si u est un conjugué de q distinct de q, alors Pu(q') ^ 0 pour tout
conjugué q' de q, distinct de q. Comme, d'autre part, n (Pu) n (P) Au

n (P) Aq (Lemme 3 (i)), on a MPu (q) MP (q) + 1, d'après la définition

de la multiplicité.

Le quaternion q n'étant pas dans K, il a une infinité de conjugués u ^ q.

La partie a) de la proposition et les lemmes 3 et 4 permettent alors d'achever
la démonstration de b) par récurrence.
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