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TaEOREME 4.2.2. Une condition nécessaire et suffisante pour que le
nombre de classes d’un corps quadratique soit divisible par 3 est que ce corps
soit de la forme Q(\ﬁ—?) (x2-4z%)) ol x et z sont deux entiers rationnels
non nuls, tels que les p.g.c.d. (z,2l) et (x,z) sont égaux a 1, que x? — 4z
est divisible par 27 et n’est pas un carré et que le polynéme X° —3zX—
n’a pas de racines rationnelles.

Démonstration. Soit L un corps quadratique. Le nombre de classe de
L est divisible par 3 si et seulement si L posséde des extensions abéliennes
non ramifiées de degré 3. Comme on I’a remarqué ci-dessus, une telle
extension est la cldture galoisienne d’un corps tchébychévien. Supposons
donc que L posséde une telle extension et notons T le corps tchébychévien
dont elle est la cloture galoisienne. Désignons par d I’entier sans carré tel

que L = Q (/ —3d) (d existe puisque L # Q (./ —3)). Le théoréme 4.1.1.

affirme ’existence d’un entier ¢ de Q (./d) dont la norme est le cube d’un
rationnel impair M, qui définit T et qui vérifie les conditions 1), 2) et 3)

1 _
de cette proposition. Ecrivons £ = 5 (a+b\/ d) et posons x = aetz = M;

on vérifie facilement que L = Q (\/ —3 (x2—4z°%) et que x et z vérifient
toutes les conditions de notre proposition, Réciproquement, soient x et z
vérifiant toutes les conditions de notre proposition; nous posons x* — 473

1
= b2d avec d sans carré. L’entier quadratique & = 5 (x+b./d) vérifie

les conditions 1), 2) et 3) du théoréme 4.1.1 donc la cloture galoisienne du
corps tchébychévien associé & ¢ est une extension abélienne non ramifiée
de degré 3 de Q(y/—3d) ie de Q (\/—3 (x2—4z%) ; le nombre de
classe de ce corps quadratique est donc divisible par 3 ce qui achéve la
démonstration.

43. Lecas [ > 3

27 P S
On rappelle que w est cos -+ Le corps L est le corps Q (w, \/ d(0*—1));

c’est une extension quadratique du sous-corps réel maximal du corps des
racines /-iéme de 'unité. On n’a pas dans ce cas de résultat aussi précis
gue celui du théoréme 4.2.2, mais le théoréme 4.1.1 permet de démontrer
= résultat suivant:
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THEOREME 4.3.1. Soient x et z deux entiers rationnels non nuls tels
que (z,2]) = (x,z) = 1, que x* — 4z' est divisible par I° et n’est pas
un carré et que le polyndme P,(X;z) — x n’a pas de racines rationnelles,
alors 1 divise le nombre de classe du corps Q (o, /(x*—4z") (0*—1) ).

Démonstration. Analogue a la partie correspondante (dans le cas
/ = 3) du théoréme 4.2.2.
Terminons ce travail par une illustration numérique. Prenons / = 5:

le corps L est alors Q(\/( —5+\/ > ) d) et I3 est 125. — Soit p un
2

nombre premier congru & 1 modulo 5. — Nous prenonsz = + p. — Dans &

les deux cas z est un carré modulo 5, donc aussi modulo 125, et 4z° est un

carré modulo 125. — Choisissons alors x tel que, d’une part, x2 soit congru |
a 4z° modulo 125 et que, d’autre part, x ne soit pas une puissance S-iéme |
modulo p (de tels x existent puisque 125 et p sont premiers entre eux). —
Le polynéme Ps (X;z) est X° — 5zX°> + 5z2X; en réduisant modulo p,
on voit que I’équation Ps(X;z) — x n’a pas de racines rationnelles. —
En conséquence, pour un tel x et un tel z, le nombre de classes du corps

Q <\/ ( —5+/5 ) (x* — 425)) est divisible par 5 dés que x2 — 4z°
2
n’est pas un carré.
En se servant, comme le fait Honda [3], d’un théoréme de Mordell (ou
de celui de Thue [9], chap. 28, qui est suffisant), on peut voir qu’il y a une
infinité¢ de corps réels et une infinité de corps imaginaires du type

Q ( \/ ( > +\/—§ ) (x*—4z°%) ) dont le nombre de classes est divisible
2

par 5. — En effet il suffit pour le voir de remarquer que, si ’on pose
x% — 4z° = y2§ avec & sans carré, alors, en faisant varier x et z assu-
jettis aux conditions décrites ci-dessus, on obtient une infinité de &
positifs et une infinité de & négatifs (6 positif correspond & un corps

—54+./5 st
2

négatif). — En fait on fixe un x qui n’est pas une puissance 5-iéme et
on montre que 'on obtient déja I’infinité de & cherchée avec cette
valeur de x. — Désignons par { une racine 25-iéme de I'unité et consi- |

imaginaire et 6 négatif a4 wun corps réel puisque
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dérons I’extension M = Q ({, 5\/ ;). — C’est une extension -galoisienne
de degré 100 sur Q; I’extension M/Q ({) est de degré 5 et I'ensemble
des 4 automorphismes non triviaux de M/Q ({) est une classe de conju-
gaison de Gal (M/Q); notons la C. — D’aprés le théoréme de
Tchebotarev, il existe une infinité de nombres premiers dont le Frobenius
est cette classe de conjugaison. — Soit p un tel nombre premier; il est tota-
lement décomposé dans Q ({) donc congru a 1 modulo 25, et il n’est pas
totalement décomposé dans M donc x n’est pas une puissance S-iéme
modulo p. — En conséquence, si z = =+ p, le nombre de classes du corps

Q <J ( _5+\/ : ) (x2—4z5)> est divisible par 5 dés que x? — 4z°
2

est divisible par 125. — Prenons x = 2 et z = p alors x> — 4z° = 4
— 4p5 = y2§ est divisible par 125. — Pour un § fixé I’équation 4 — 4p°
= 325 n’a, d’aprés le théoréme de Thue, qu’un nombre fini de solu-
tions; une infinité de p étant permis, on obtient donc Pinfinité de ¢
cherchée et ces 0 sont clairement négatifs. — De méme, en prenant
x =11 etz = — p, on obtient 'infinité de J positifs cherchée. —

Remarque. On peut montrer qu’en fait, dans le cas / = 5, les condi-
tions nécessaires a la divisibilité par 5 du nombre de classes de

Q <\/ ( =3 +2 V.3 ) (x?— 4z5)> énoncées dans le théoréme 4.3.1. sont

suffisantes. —
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