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donc g, 1/2 est une puissance /-iéme modulo p et donc &, qui est

l .
congru a a,_;/2 modulo p, est une puissance /-iéme modulo p. On
1

conclut en remarquant que, s’il existe un k divisant l_)—i_ tel que p divise

by, alors p divise b,_;. Pour terminer notre démonstration il ne reste

1
d ,
plus que le cas (=)= —1 et p = —1 mod /. Dans ce cas, il y a un
p

seul idéal premier de K au-dessus de p, notons le p. Si & est une
p+1

puissance /iéme modulo p, alors ¢ ' est congru 3 un rationnel mo-

dulo p; mais ./ d n’est pas congrue a un rationnel modulo p, donc p
p+1

divise bp .1- Réciproquement, si p divise b1, alors § ! est congru |
1 l
+1
. : 2= (-1) ‘ |
a un rationnel modulo p, donc & est congru a 1 modulo p ce

qui implique que ¢ est une puissance /icme modulo p. Enfin, on

conclut comme précédemment en remarquant que, si il existe un k
p+1

1 . -
divisant % tel que p divise b,, alors p divise b ! .

4) APPLICATIONS

»

4.1. Corps tchébychéviens non ramifiés

Nous allons étudier les corps tchébychéviens dont la cl6ture galoisienne
N est non ramifiée sur L. L’existence de tels corps implique la divisibilité
par / du nombre de classes du corps L; nous reviendrons sur cet aspect aux
paragraphes 4.2 ¢t 4.3. On a le théoréme suivant:

: 1 - |
THEOREME 4.1.1. Soit & = 5 (a+b./ d) un entier du corps K dont

la norme est la puissance l-i€éme d’un entier rationnel impair M. Si les trois
conditions suivantes sont vérifiées: 1) le polynome P, (X; M) — a n’a pas
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de racines rationnelles ; 2) 1> divise le produit bd, 3) le p.g.cdde a et b
est 1 ou 2, alors & définit un corps tchébychévien T dont la cloture galoi-
sienne N est non ramifiée sur L. Réciproquement, si T est un corps tchéby-
chévien dont la cléture galoisienne est non ramifiée sur L, alors il existe un

1 L
entier quadratique £ = 3 (a+by/ d) de norme M' avec M impair qui

définit T et qui vérifie les conditions 1), 2) et 3) énoncées ci-dessus.

Démonstration. Supposons 1), 2) et 3) vérifiées. Le lemme 1.1.2 et la
condition 1) montrent que & n’est pas une puissance J-iéme dans K, donc que £
définit un corps tchébychévien T. Les conditions 2) et 3) montrent que /
divise b mais ne divise pas a; en conséquence / ne divise pas M et donc
P'idéal engendré par ¢ est premier a /. L’entier quadratique ¢ vérifie donc la
condition imposée au début de la partie 2) de ce travail et nous pouvons
employer les résultats de cette partie. La condition 3) signifie que £ n’est
divisible par aucun nombre rationnel différent de =+ 1, donc la proposition
2.2.6 montre que seuls les idéaux premiers de L qui divisent / peuvent se
ramifier dans la cldture galoisienne N de T. Le lemme 2.1.1 et la proposi-
tion 2.2.1 montrent que & est l-primaire, ce qui implique que les idéaux
premiers de L au-dessus de / ne sont pas ramifiés dans N/L. Enfin, ’exten-
sion N/L étant de degré impair, les places a Pinfini de L ne peuvent pas se
ramifier dans N, donc N/L est non ramifiée. Réciproquement, soit 7' un
corps tchébychévien dont la cldture galoisienne N est non ramifiée sur L.

1
Soit = G («+B+/ d) un entier quadratique définissant T'; comme on I'a

vu au début de la partie 2) de ce travail, on peut supposer que I'idéal prin-
cipal () nest divisible par la puissance [-iéme d’aucun idéal premier de K
qui divise /. L’extension N/L étant non ramifiée, I'idéal principal (17) engendré
par n dans K est la puissance -iéme d’un idéal, donc # et / sont premiers
entre eux et # est J-primaire; de plus, quitte & multiplier # par une puissance
liéme, on peut supposer que # est premier a 2. En vertu du lemme 2.1.1
et de la proposition 2.2.1 on peut, en remplagant éventuellement # par une
de ses puissances premiéres a / (ce qui, d’aprés la proposition 1.2.5, ne
change pas le corps tchébychévien associ€) supposer que [ 2 divise pd.
Ecrivons alors 7 = ¢4 c5& oll ¢, et ¢, sont des entiers rationnels, ou ¢, est

: . . 1 —=
sans puissance [-iéme et ou & = 3 (a+b\/ d) est un entier de K qui n’est

divisible par aucun entier rationnel différent de + 1. La norme de 7 étant




— 184 —

une puissance /-iéme, on peut, en remplagant éventuellement 5 par son
carré (ce qui ne change pas le corps tchébychévien associé) supposer que les
nombres premiers qui divisent ¢, sont décomposés dans le corps K. La
proposition 2.2.6 montre qu’aucun nombre premier différent de / ne divise cq1s
comme de plus / et n sont premiers entre eux, / ne divise pas ¢, et donc
¢y = 1. L’entier quadratique ¢ définit donc le corps tchébychévien T,
D’autre part /? divisant fd divise aussi bd puisque / ne divise pas ¢, cs.
Enfin, £ définissant le corps tchébychévien T, il n’est pas une puissance
l-iéme dans K et le lemme 1.1.2 montre que P, (X; M) — a n’a pas de
racines rationnelles. L’élément ¢ répond donc i notre question.

4.2. Rappelons le lemme suivant:

LeMME 4.2.1. Soit L wun corps quadratique et M une 3- extenszon
abélienne non ramifiée de L, alors M est galoisienne sur Q.

Démonstration. Soit H le groupe de Galois de la 3-extension abélienne
maximale non ramifiée de L. Cette extension maximale étant galoisienne
sur Q, le groupe Gal (L/Q) agit par conjugaison sur H. Soit H, le sous- §
groupe de H formé des éléments invariant par Gal (L/Q) et H, celui formé
des €léments qui, par 'action de 1’élément non trivial de Gal (L/Q), se
transforment en leur inverse. Les sous-groupes H, et H, sont stables par
Gal (L/Q) et leur produit direct est isomorphe & H. En conséquence, le
corps des invariants M, de H, est galoisien sur Q et Gal (L/Q) agit trivia-
lement sur Gal (M,/L). Les ordres de Gal (M,/L) et de Gal (L/Q) étant
premier entre eux, le corps M, est le composé de L et d’une 3-extension
non ramifiée de Q. Le corps Q n’ayant pas d’extension non ramifiée, on
a M, =L ie H, = H et donc tous les sous-groupes de H sont stables
par l'action de Gal (L/Q) ce qui implique I’assertion de notre lemme.

Il résulte de ce lemme que toute extension abélienne non ramifiée de

degré 3 d’un corps quadratique (nécessairement différent de Q (\,-/t 3))_
est la cloture galoisienne d’un corps tchébychévien: en effet, ce lemme montre
qu’une telle extension est galoisienne sur Q; elle n’est pas abélienne sur
Q puisque Q‘ ne possede pas d’extension non ramifiée, c’est donc la cléture
galoisienne d’un corps cubique non galoisien; ce corps n’est pas pur puisque
le corps quadratique K contenu dans sa cloture galoisienne n’est pas le
corps Q(\/ j?:), donc (remarque 1.1.6) c’est un corps tchébychévien. On
peut maintenant donner une caractérisation des corps quadratiques dont
le nombre de classes est divisible par 3; on a:
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TaEOREME 4.2.2. Une condition nécessaire et suffisante pour que le
nombre de classes d’un corps quadratique soit divisible par 3 est que ce corps
soit de la forme Q(\ﬁ—?) (x2-4z%)) ol x et z sont deux entiers rationnels
non nuls, tels que les p.g.c.d. (z,2l) et (x,z) sont égaux a 1, que x? — 4z
est divisible par 27 et n’est pas un carré et que le polynéme X° —3zX—
n’a pas de racines rationnelles.

Démonstration. Soit L un corps quadratique. Le nombre de classe de
L est divisible par 3 si et seulement si L posséde des extensions abéliennes
non ramifiées de degré 3. Comme on I’a remarqué ci-dessus, une telle
extension est la cldture galoisienne d’un corps tchébychévien. Supposons
donc que L posséde une telle extension et notons T le corps tchébychévien
dont elle est la cloture galoisienne. Désignons par d I’entier sans carré tel

que L = Q (/ —3d) (d existe puisque L # Q (./ —3)). Le théoréme 4.1.1.

affirme ’existence d’un entier ¢ de Q (./d) dont la norme est le cube d’un
rationnel impair M, qui définit T et qui vérifie les conditions 1), 2) et 3)

1 _
de cette proposition. Ecrivons £ = 5 (a+b\/ d) et posons x = aetz = M;

on vérifie facilement que L = Q (\/ —3 (x2—4z°%) et que x et z vérifient
toutes les conditions de notre proposition, Réciproquement, soient x et z
vérifiant toutes les conditions de notre proposition; nous posons x* — 473

1
= b2d avec d sans carré. L’entier quadratique & = 5 (x+b./d) vérifie

les conditions 1), 2) et 3) du théoréme 4.1.1 donc la cloture galoisienne du
corps tchébychévien associé & ¢ est une extension abélienne non ramifiée
de degré 3 de Q(y/—3d) ie de Q (\/—3 (x2—4z%) ; le nombre de
classe de ce corps quadratique est donc divisible par 3 ce qui achéve la
démonstration.

43. Lecas [ > 3

27 P S
On rappelle que w est cos -+ Le corps L est le corps Q (w, \/ d(0*—1));

c’est une extension quadratique du sous-corps réel maximal du corps des
racines /-iéme de 'unité. On n’a pas dans ce cas de résultat aussi précis
gue celui du théoréme 4.2.2, mais le théoréme 4.1.1 permet de démontrer
= résultat suivant:
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THEOREME 4.3.1. Soient x et z deux entiers rationnels non nuls tels
que (z,2]) = (x,z) = 1, que x* — 4z' est divisible par I° et n’est pas
un carré et que le polyndme P,(X;z) — x n’a pas de racines rationnelles,
alors 1 divise le nombre de classe du corps Q (o, /(x*—4z") (0*—1) ).

Démonstration. Analogue a la partie correspondante (dans le cas
/ = 3) du théoréme 4.2.2.
Terminons ce travail par une illustration numérique. Prenons / = 5:

le corps L est alors Q(\/( —5+\/ > ) d) et I3 est 125. — Soit p un
2

nombre premier congru & 1 modulo 5. — Nous prenonsz = + p. — Dans &

les deux cas z est un carré modulo 5, donc aussi modulo 125, et 4z° est un

carré modulo 125. — Choisissons alors x tel que, d’une part, x2 soit congru |
a 4z° modulo 125 et que, d’autre part, x ne soit pas une puissance S-iéme |
modulo p (de tels x existent puisque 125 et p sont premiers entre eux). —
Le polynéme Ps (X;z) est X° — 5zX°> + 5z2X; en réduisant modulo p,
on voit que I’équation Ps(X;z) — x n’a pas de racines rationnelles. —
En conséquence, pour un tel x et un tel z, le nombre de classes du corps

Q <\/ ( —5+/5 ) (x* — 425)) est divisible par 5 dés que x2 — 4z°
2
n’est pas un carré.
En se servant, comme le fait Honda [3], d’un théoréme de Mordell (ou
de celui de Thue [9], chap. 28, qui est suffisant), on peut voir qu’il y a une
infinité¢ de corps réels et une infinité de corps imaginaires du type

Q ( \/ ( > +\/—§ ) (x*—4z°%) ) dont le nombre de classes est divisible
2

par 5. — En effet il suffit pour le voir de remarquer que, si ’on pose
x% — 4z° = y2§ avec & sans carré, alors, en faisant varier x et z assu-
jettis aux conditions décrites ci-dessus, on obtient une infinité de &
positifs et une infinité de & négatifs (6 positif correspond & un corps

—54+./5 st
2

négatif). — En fait on fixe un x qui n’est pas une puissance 5-iéme et
on montre que 'on obtient déja I’infinité de & cherchée avec cette
valeur de x. — Désignons par { une racine 25-iéme de I'unité et consi- |

imaginaire et 6 négatif a4 wun corps réel puisque




— 187 — .

dérons I’extension M = Q ({, 5\/ ;). — C’est une extension -galoisienne
de degré 100 sur Q; I’extension M/Q ({) est de degré 5 et I'ensemble
des 4 automorphismes non triviaux de M/Q ({) est une classe de conju-
gaison de Gal (M/Q); notons la C. — D’aprés le théoréme de
Tchebotarev, il existe une infinité de nombres premiers dont le Frobenius
est cette classe de conjugaison. — Soit p un tel nombre premier; il est tota-
lement décomposé dans Q ({) donc congru a 1 modulo 25, et il n’est pas
totalement décomposé dans M donc x n’est pas une puissance S-iéme
modulo p. — En conséquence, si z = =+ p, le nombre de classes du corps

Q <J ( _5+\/ : ) (x2—4z5)> est divisible par 5 dés que x? — 4z°
2

est divisible par 125. — Prenons x = 2 et z = p alors x> — 4z° = 4
— 4p5 = y2§ est divisible par 125. — Pour un § fixé I’équation 4 — 4p°
= 325 n’a, d’aprés le théoréme de Thue, qu’un nombre fini de solu-
tions; une infinité de p étant permis, on obtient donc Pinfinité de ¢
cherchée et ces 0 sont clairement négatifs. — De méme, en prenant
x =11 etz = — p, on obtient 'infinité de J positifs cherchée. —

Remarque. On peut montrer qu’en fait, dans le cas / = 5, les condi-
tions nécessaires a la divisibilité par 5 du nombre de classes de

Q <\/ ( =3 +2 V.3 ) (x?— 4z5)> énoncées dans le théoréme 4.3.1. sont

suffisantes. —
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