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RECENT PROGRESS
IN THE THEORY OF MINIMAL SURFACES *

by E. BOMBIERI

I. INTRODUCTION

In this talk I will report on some recent results in the theory of minimal
surfaces. Many of them belong to the theory of higher dimensional mini-
mal varieties and all of them are related to the point of view of Geometric
Measure Theory and the Calculus of Variations. The important approach
to the various aspects of the 2-dimensional Plateau problem provided by
harmonic maps and the Hilbert space setting, will not be treated here.
I should also stress the fact that this report is not and does not intend to
be a survey of all important achievements of the last years, but rather its
purpose is to present a few recent results connected with the central prob-
lems of the theory, namely existence, uniqueness and regularity of solutions
to the Plateau problem from the point of view of the Calculus of Variations.

II. CURRENTS AND VARIFOLDS

Let U be an open set of R” and let T be a distribution on smooth dif-
ferential m-forms ¢ with compact support in U. The boundary of T is the
distribution defined by (0T') (y) = T (dyr) where d is the exterior differen-
tial; clearly 0T is a distribution on (m-1)-forms. If T and 0T are continuous
with respect to the L* topology on forms, one says that 7"is locally normal,
and if in addition.T" has compact support in U one says that 7" is normal.
Normal currents form a Banach space in the following way. Let M (¢) be a
norm on m-forms, and let M (T) be the dual norm

M(T) = sup {T(p); M(p) < 1};

then N(T) = M (T) + M (0T) is a norm in the space of normal currents.
There is a very special norm on forms, called comass, such that the dual
norm, called mass, coincides with m-dimensional area in case T is integra-

1) This article 1_1as already been published in Contributions to Analysis, papers com-
mumcated to an international Symposium in honour of A. Pfluger, ETH Zirich,
April 1978. Monographie de I’Ens. Math. N° 27, Genéve 1979.
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tion on an m-dimensional simplex. It follows that if T is integration on an |
m-dimensional oriented compact manifold V, then its mass is M (T) = m-
dimensional area of V. ‘

Not all currents are obtained by integration on sets. An integral chain
vy = Xn,o, where n,eZ and ¢ are simplexes, determines in a natural
fashion a current y (¢p) = X n, | ,@;if f: spty - U is a Lipschitz map, then
one can define f.y by means of f7(¢) =7y (f#¢). Now a current T is '
rectifiable if it can be approximated in the mass norm by currents of type
f7,v a finite polyhedral chain. If both T and 0T are rectifiable, one says
that 7' is an integral current. Integral currents are the appropriate general-
ization of the notion of oriented manifold with boundary, as far asintegration f‘
of differential forms is concerned. Now the main point is: with respect to
a certain very weak notion of convergence (the flat convergence) one has:

(a) a closure theorem, to the effect that if a limit of integral currents is |
normal, the limit still is an integral current; |

(b) a compactness theorem, to the effect that bounded sets of integral
(or normal) currents are precompact;

(c) an approximation theorem, to the effect that integral currents can f
be approximated in the strong norm by smooth C' deformations near the
identity of suitable integral chains.

Only one warning: the results (a), (b) above hold only if we consider
currents with compact support = K, where K is a compact Lipschitz neigh-
borhood retract (for example K is convex or K has C 2 boundary). Also, the
approximation theorem, although it says that integral currents are almost :

‘a countable union of C! manifolds, does not imply anything about the
support of the current. For example, let z,, z,, ..., Z,, ... be a countable
dense subset of a compact set K < R?, let C,, be the circle | Z = Zy | = 27"
with the usual orientation and let 7 = X | . Then T is an integral current,
but clearly spt (T) > K. ™ Cm | |

Since the mass M (T) is lower semicontinuous on integral currents, one |
can use the closure and compactness theorems to obtain a solution to
Plateau’s problem in the following form. Let X be an integral current with -
support in a fixed nice compact set K; then there is an integral current 7 of |
Jeast mass in the set {T’; 0T = 0X, spt T < K}. In fact, one simply takes a
minimizing sequence- T; such that 07; = 0X, M (T;) - inf and takes a
weak limit 7= lim T on a suitable subsequence. Now 07 = 0X and T
is integral with spt T <= K, by the compactness theorem, it is also obvious
that M (T) = lim inf M (T}), by lower semicontinuity of mass. |
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The question arises to what extent this is a satisfactory solution to the
problem: among all surfaces with a given boundary, find one with least
area. This gives rise to the regularity problem, that is showing that the
solutions thus found are indeed manifolds or manifolds outside a small
singular set.

The theory of normal and integral currents, as developed by Federer
and Fleming [F-F] in their fundamental paper of 1960, is essentially a
theory of chains with real or integer coefficients, which has both all reason-
able properties of algebraic topology and which at the same time yields
reasonable spaces for the purpose of the calculus of variations. However,
it is not entirely suitable to study the actual soap films which come out in
physical experiments. One difficulty is because of orientation; for example,
a Mobius band usually arises as a soap film off a wire which approaches a
doubly covered circle. This difficulty can be overcome by working with
currents with finite abelian coefficient group, for example with mod 2
coefficients. On the other hand, it became increasingly clear that in order
to get a theory suitable for describing physical experiments one had to
work in a more set theoretic fashion and give up the useful notion of
boundary operator. A convenient theory is the theory of varifolds by
| Almgren. A varifold is simply a Radon measure on the Grassmann bundle
of the space. An appropriate notion of rectifiable and integral varifold is
developed, and analogs of the closure, compactness and approximation
theorems can be obtained. There are some important differences however
and it turns out that currents and varifolds complement each other in
several respects.

We end this section by referring to Federer, [FH 1] Ch. IV and Almgren,
[AF 1] for precise definitions and proofs of the basic properties of currents
and varifolds. All these concepts can be extended to ambient spaces different
from euclidean space and in particular to Riemannian manifolds.

III. RECENT PROGRESS ON EXISTENCE PROBLEMS

One of the great successes of the Calculus of Variations in the Large
has been the proof of existence of closed geodesics on smooth compact

Riemannian manifolds. The following striking result is a two dimensional
extension.
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THEOREM 1 (J. Pitts [P 1, 2]. Every smooth, compact, three dimensional
Riemannian manifold without boundary contains a non-empty, closed, im- |

bedded, two dimensional, minimal submanifold without boundary.

Suppose M is a smooth compact Riemannian manifold of dimension #
and let 0 £ k < n. It is still an open question whether M always contains
a regular closed minimal submanifold of dimension k. If & = 1, this is the
problem of existence of simple closed geodesics, which can be treated using -
Morse theory. If £ = 2, existing results required suitable assumptions on
M. For example, if kK = n — 1 and H,_; (M, Z) # 0 one can find a closed
current 7 with 0T = 0 representing a given homology class and for which
M (T) = min; regularity theorems in dimension #» < 7 now imply that
spt T is a smooth manifold. Lawson [L] proved that if M = S then M |
contains closed minimal surfaces of arbitrarily high genus. For the general |
case, there has been a partially successful approach by Almgren [AF 2].

Let I™ be the unit m-cube, Iy its boundary, let (4, @) be a space with
a base point a and let 7, (4, {a}) be the m dimensional homotopy group of -
equivalence classes of continuous mappings of (I™ Iy) into (4, a). If

Z, (M, G) is the group ') of k-cycles of M with coefficients in the abelian

group G, then it is known that =, (Z, (M, G), {0}) is naturally isomorphic

with the homology group H,,., (M;G) for 1 = k £ dim M. Now let
IT be a homotopy class of maps ¢: (I™, I§) — (Z, (M, G), {0}) and consider
the minimax problem inf  sup F(p )

oell telm

where F'is a good function on Z, (M, G), in our case the mass. The point of
Morse theory is: if I # 0, then the solutions to the minimax problem are
non-trivial critical points of the functional F (7). Almgren succeeded in

doing this on the space of k-currents and k-varifolds, obtaining non-trivial

stationary varifolds in this way. Unfortunately, the regularity theory of |
stationary varifolds is still at a rudimentary stage, and Almgren’s solution-:
suffers of the same defects as for the earlier Federer and Fleming solution
to Plateau’s problem. However, Pitts has been able to restrict the class of* I
competing maps ¢ in such a way so that the topological aspects are un- |
changed but the critical points share the most fundamental properties of
locally minimizing currents and varifolds. For these special critical points :

he is then able to carry further the regularity theory and obtain eventually

his theorem.

1) Here Z;, (M, G) is made into a topological group by means of the flat norm.




IV. RECENT PROGRESS ON UNIQUENESS PROBLEMS

It is a well-known fact that even for absolutely minimizing surfaces the
minimum need not be unique. It is expected that in case there are two or
more absolute minima, a small deformation of the boundary will separate
them, restoring uniqueness of absolute minimum. This has been recently
done by F. Morgan [M], who proves that almost every C?3 closed curve
in R? bounds a unique minimal surface of least area. It would be however
too technical to describe this result in more detail and, going to the opposite
point of view, I will give an explicit example of a 2 dimensional compact
manifold in R* bounding infinitely many oriented stationary manifolds of
dimension 3. In fact, our example will be the Clifford flat torus

2+ xE=xi4+xi=1/2
which is also minimal in S 3.

THEOREM 2. The Clifford flat torus in R* bounds infinitely many 3-
dimensional manifolds with mean curvature O at every point.

We sketch the proof of this result, which is implicit in the paper [B-
DG-G] on minimal cones and the Bernstein problem.

Let p + ¢ = n — 2 and consider the action of SO (p) x SO (g) on
R" = RP*! x RIYL, Let u = (x%+...+xpil)%, v = (xpiz—{-...—l-
xpi q+2)%. If we consider minimal hypersurfaces in R" invariant by
SO (p) X SO (g), we may describe them in the form f(u,v) = 0 with
u, v as above, and thus as a curve I in the quadrant u,v = 0. If we now
represent I parametrically as (u (1), v (¢)) the condition of mean curvature 0
on the hypersurface means that

w'o' = v+ [p@)? + q @) (“— - "’—) =0
v U
or in other words that I" is a geodesic for the metric

ds® = uP o1 [(du)* + (dv)?] .

In our case .
ds* = (wv) [(du)® + (dv)?]

and the requirement that our hypersurface has the Clifford torus as bound-
ary means that we have to find all geodesics which start at <i_ , L_ and
W2 'v2

end at wv = 0. There is exactly one such geodesic ending at (0, 0), namely
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= 9. This corresponds to the well-known cone x2 + xﬁ = x3 + x3,

‘which has indeed mean curvature 0. The other possibility for a geodesic |
is to end on the u-axis, those ending on the v-axis being obtained by a sym- !
metrical reflection. Up to a homothetic transformation there is only one '

such geodesic. We introduce the new homothetically invariant parameters

) v’
¢ = artg—, 0 = artg—,
u u

. T T
=0 - 30 + -, =0+ ¢ — —
_ ¢+ 3 1/ -

and rewrite the equation for geodesics as

- 3 7 .
6 = —— sin 06 ——= sin Y
J 2 2
l‘ﬁ 1 . 3 . y
= — sin ¢ — — sin
‘ 2 2 :
We are interested in the unique characteristic C which at time t = — o0 _

starts at the saddle point (z, 0) and at time # = oo ends at the origin (0, 0).
Since the diagonal u = v goes in the line ¢ = y in the (o, Y)-plane, if we

follow C from ¢ = — oo to a time ¢, for which ¢ = , going back to the

(4, v) plane we get a geodesic starting on the axis v = 0 and ending on
u = v; clearly by applying a suitable homothety we may get a geodesic

ending at u = v = 5 and a solution to our problem. It follows that

our result will be proved if we show that the characteristic C crosses the
line ¢ = ¥ infinitely many times. This in fact is obvious, because C ends
at (0,0) and it is easily checked that (0, 0) is a focal singular point, or
vortex, of the differential system for o, .

It may be noted that the same construction gives other’examples, like

1 1
for the boundary S2 < \/2> S2 ( \/§>, with almost exactly the same

result.

V. RECENT PROGRESS ON REGULARITY PROBLEMS -

The regularity thec;ry of minimal currents and varifolds is fundamental

if we want to obtain classical solutions to variational problems. Here the
theory proceeds in two main directions: one is to prove stronger and better

!
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regularity theorems, the other is to produce more examples of singular
minimal varieties to narrow the gap.

It is a classical result that a minimal surface is real analytic at every
regular point. Let ¥ < C" = R*" be a complex analytic subvariety of C";
by Wirtinger’s inequality, ¥ is also an absolutely minimizing surface in
R2" hence V may carry singularities and the singular set can have co-
dimension 2. If T is a minimal hypersurface in R”, singularities are harder

to find : Simons’ cone
24+t xE =X+ L+ X

is the first and simplest example of a singular absolutely minimal hypersur-
face in R®. All these examples are real analytic sets and one could ask whether
this is always the case. However there are topological obstructions for a sin-
gularity to be real analytic, as the following construction by Milani shows.

We can find an embedding of P? (C), the complex projective plane,
in R® so that P2 (C) will be on the sphere S® given by x} + ... + x5 = 1.
By the general theory, there is a 5-dimensional current T with boundary
P? (C) which is absolutely minimizing and, by results of Allard on bound-
ary regularity, one can show that spt (7) is a manifold in a neighborhood
of its boundary. We conclude that the singular set of T is a compact sub-
set of spt (T') \ spt (0T). Now assume that spt (7') is a real analytic set 2.
By Hironaka’s theorem on resolution of singularities, together with a very
important refinement obtained by Tognoli, there is a real analytic mani-
fold X’ and a proper f: X' — X which is an isomorphism outside f 1
(sing 2). Thus X’ is a real manifold with boundary P? (C). This contradicts
Thom’s theorem that P2 (C) is a generator of infinite order of the co-
bordism ring, and the conclusion is that spt (7') is not a real analytic set.

Another beautiful example has been obtained by Lawson and Osser-
man [L-O] in their work on the Dirichlet problem on the minimal surface
system in non-parametric form, in higher codimension. If : S® —» S2 is
the Hopf map

n(zy,2z;) = (|Z1|2_ I?zlz, 22122)

where (z4,2,)eC x C = R* and # is considered as 7 (zy,z.)eR X C
~ R>, they found that the Lipschitz function f:R* — R3® defined by

X

f(x) =\—/;|x|n<~> forx # 0,

[~

is a solution of the minimal surface system. This gives the first example of a
non-parametric minimal Lipschitz cone, of dimension 4 in R”.
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General regularity theorems for absolutely minimal currents have
proved to be very difficult to obtain. The codimension 1 case has been
treated with success; after previous work by Reifenberg, De Giorgi,
Almgren, Miranda, Simons, finally Federer [FH 2] proved the sharp result

that absolutely minimal hypersurfaces are non-singular in codimension
less than 7. In particular, minimal hypersurfaces of dimension <6 are

analytic manifolds. Also, in the codimension one non-parametric case Bom-
bieri, De Giorgi and Miranda proved regularity in any dimension, a result
to be contrasted with the Lipschitz singular cone of Lawson and Osserman.

In general codimensions, the only result was that the set of regular points
isdense (Reifenberg, Morrey, Almgren) and only recently Almgren announced
[AF 3] that minimal surfaces are regular almost everywhere. It seems likely that
Almgren’s new methods will in fact show that minimal surfaces are regular in
codimension 2; in view of the examples prov1ded by complex analytlc varieties,
this result would be sharp.
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