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donc £ est, dans K (¢), congru A une puissance l-iéme modulo £'¢~1/2

mais pas modulo 1*0¢"D/2; on a donc s =1— (I-1)2 = (I+1)/2.
Si I ne divise pas d, I'indice de ramification de K ({)/K est [ — 1 et donc ¢
est, dans K (), congru A une puissance l-iéme modulo £'~' mais pas
modulo 2% onadoncs’ =1— (I—-1) = 1, C.Q.F.D.

En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) DECOMPOSITION DES NOMBRES PREMIERS DANS T

On désigne toujours par T un corps tchébychévien de degré premier /,
par & un entier quadratique définissant 7 et assujetti & la condition imposée
au début de la partie 2 de ce travail, par N la cloture galoisienne de T et
par L le sous-corps d’indice / de N. De plus, si p est un nombre premier,
on note (p);, et (p)r les idéaux principaux de L et T engendrés par p. Enfin,
pour alléger la rédaction, on suppose dans toute cette partie que le degré
de N/QestI(I—1).

On a la proposition suivante:

PROPOSITION 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p; on note p; l’intersection de p et de L.

a) Si pp estinerte dans N|L, alors p est inerte dans T (c’est-d-dire
(p)r est un idéal premier de T).

b) Si p; est ramifié dans N|L, alors p est totalement ramifié dans T
(i.e. l'idéal (p)r est la puissance I-iéme d’un idéal premier de T).

c) Si pg est décomposé dans N|L et si (p);, = (ql...qép)e" OU (y, «ee g,
sont des idéaux premiers de L distincts deux a deux et de degré résiduel
fooona (p)r = P (P ... ‘ng)ep ouP, P, ..., EBgP sont des idéaux premiers

de T distincts deux a deux, le degré résiduel de P étant 1 et les degrés
résiduels des B, étant f,.

Démonstration.

a) L’hypothése implique que le degré résiduel de p dans N/Q est divisible
par L. Posons p; = p N T. Ce degré résiduel est le produit du degré résiduel
de py dans 7/Q par le degré résiduel de p dans N/T. L’extension N/T étant
galoisienne, ce dernier doit diviser le degré de I’extension N/T’; il est donc
premier a L. En conséquence / divise le degré résiduel de p; dans 7/Q.
Le degré de T/Q étant /, on a le résultat cherché.




|
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b) Méme démonstration qu’au a) en remplacant « degré résiduel »
par « indice de ramification ».

¢) Notons ¢4, 0,,...,0; les / automorphismes de I’extension N/L en
convenant que oy est Iidentité. Pour i = 1, ...,/ on pose p; = o;(p)
(donc p; = p); par hypothése les p; sont dlstlncts deux a deux.

On désigne par G_, (p,) le groupe de décomposition de p;; 'ordre de
~1 (p)) este, £, qui est premier & /, donc le corps des invariants de G_, (p,)
contient au moins un conjugué de T quitte & remplacer T par un de ses
conjugués, on peut donc supposer que T est inclus dans G_{(p,). On pose

PiT pl NT et TH = (T) De plus on note N le complété de N
en p, et T(‘) ladherence de T( " dans N Avec nos choix des indices, on

aTW = Tet T est le corps Q, des nombres p- adiques, ce qui signifie que
P1, r est non ramifié et de degré résiduel 1 dans 7/Q. D’autre part,sii > 1,

A A A A A J
le composé T'. TV est N, donc le composé T. T est Net donc 7P = N B

Cela signifie que le degré résiduel et I'indice de ramification de p; dans
N/Q, qui sont respectivement égaux a e, et f,, sont égaux i ceux de
py 0 T dans T9/Q. Mais (toujours par le choix de nos indices) ceux-ci
sont égaux a ceux de p; " T = p,,, dans 7/Q. Enfin, I'extension N/T
¢tant galoisienne, si p,r = Pi,r alors il existe un ¢ dans Gal (N/T) tel
que T (pr) = p;. Mais p, "L =p,nL = pr, donc la restriction de ¢
a L est dans le groupe de décomposition de pr dans L/Q. Ce groupe est

I -1
d’ordre e, f, = ——, donc 7 est dans le sous-groupe de Gal (N/T') d’ordre

I -1 o | . .

. En conséquence, parmi les / — 1idéaux Pa,1> - Ppr il y en a au
moll"ns g, distincts. On a donc trouvé, dans T, au dessus de p, un idéal
premier non ramifié de degré résiduel 1 dans 7/Q et une collection d’au
moins g, idéaux premiers d’indice de ramification e, et de degré résiduel Jp
dans 7/Q. Comme [T:Q] =1=1 + dp e, fp cette collection d’idéaux
premiers est constituée d’exactement g, €léments et on a trouvé tous les
idéaux premiers de 7" au dessus de p; celd achéve la démonstration.

On rappelle (voir 2.1) que j = 1 ou 0 suivant que & est ou n’est pas
[-primaire et que si ¢ est le plus grand entier rationnel divisant £, on a
posé ¢ = ¢, c; avec c; sans puissance liéme et g = [] p. En plus,

P|C1
d

()=
p
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pour tout nombre premier p, on pose (p)L = (ay... qu) ¥ ou les q; sont des
idéaux premiers de L distincts deux & deux de degré résiduel f, dans

L/Q. Lextension L/Q étant cyclique, le calcul de e,, f, et g, est simple.
Avec ces notations, on a:

TutorEMe 3.2. La décomposition d’un nombre premier p dans 7' est
donnée par les régles suivantes:

1) Sip=1letsij=0ona() =1 ol lest un idéal premier de T.
Sij=1ona (D =114, ... lg)? ou I, I ..., Ig; sont des idéaux premiers
de L distincts deux a deux, le degré résiduel de [ étant 1 et les degrés rési-

1 _
duels des [, étant f;, sauf si / = 3, d = 6 (mod 9) et si & = 3 (a+b\/d)

avec b non divisible par 9 auquel cas 3 est inerte dans 7" (i.e. (3)r est premier).

2) Si p divise g, alors (p)r = P! ot P est un idéal premier de T (si [

d
divise g et (—l) = 1, alors j = 0 et on retrouve un cas de 1)).

3) Si p # [ et si p ne divise pas g, alors en supposant { premier a p
(ce & quoi on peut toujours se ramener quitte a changer le ¢ définissant T),
on a deux cas

a) Si ¢ est, modulo un idéal premier de K au-dessus de p, une puis-

sance l-iéme, alors (p);r = B (P, ... SJ3gp)eP ol P, Py, ..., Pg, sont des
idéaux premiers de T distincts deux a deux, le degré résiduel de B étant 1

et les degrés résiduels des P; étant f,.

b) Si & n’est pas, modulo un idéal premier de K au-dessus de p, une
puissance /-iéme, alors p est inerte dans 7T (i.e (p)r est un idéal premier).

De plus, si p 5% (—) mod /, on est toujours dans le cas a). Sinon,
p

pour tout entier k, posons & = 3 (a,+ b, \/ 67)—, on est dans les cas a)

“ . " . . 1 d
ou b) suivant qu’il existe ou qu’il n’existe pas de k divisant : (r—(-))

p
tel que p divise b,.

Démonstration. Nous aurons besoin du lemme suivant:
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LeEMME 3.3. Soit p un nombre premier ; si les idéaux premiers de L
qui contiennent p sont inertes dans N/L, alors p est totalement décomposé
dans L.

Démonstration du lemme. Soit p un idéal premier de N contenant p
et p, I'intersection de p et de L. Supposons p;, inerte dans N/L et désignons
par G_, et G, les groupes de décomposition et d’inertie de p dans N/Q,

A

par N_, et N, les corps des invariants de G_; etde Gy, par Nle complete '
de N en p et par N_l, N0 etL les adhérences de N_,;, N, et L dans N

A

Le corps N 1 est le corps Q, des nombres p-adiques. L’extension NO/N 1
est cyclique non ramifiée et son degré est égal au degré résiduel de p dans
‘ A

N/Q donc est divisible par /. Enfin, I’extension L/Q, est cyclique et son
indice de ramification est e,. Ce e, est aussi I'indice de ramification de p |

A A

dans N/Q; le composé L. N, est donc une extension abélienne de Q,
dont I'indice de ramification et le degré résiduel sont égaux a I'indice de

A

ramification et au degré résiduel de p dans N/Q. En conséquence N est

AN

le composé LN, donc est abélien sur Q,, et donc G_; est un groupe abélien.
Mais, p,, étant inerte dans N/L, 'ordre de G_; est divisible par /. Le seul
sous-groupe abélien de Gal (N/Q) dont l’ordre divise / est Gal (N/L),
donc G_; est Gal (N/L) ce qui implique que p est totalement décomposé
dans L, C.Q.F.D.

Revenons a la démonstration du théoréme:

1) Soit £ un idéal premier de N au-dessus de / et £, I'intersection de £ ,
et L. Sij = 0, alors £, est ramifié dans N/L et on conclut avec la proposi-
tion 3.1. Si j = 1, £; est non ramifié dans N/L, donc est décomposé ou
inerte. Si £, est inerte, alors, d’apres le lemme 3.3, / est totalement décom-
posé dans L. Le corps L étant une extension quadratique du sous-corps réel.
maximal du corps des racines /-i¢émes de I’'unité, on a nécessairement / = 3.

Le corps L est alors Q(y/ —3d) donc il faut d = 6 (mod 9) pour que 3 soit
totalement décomposé dans L, ce qui démontre la premiére partie de notre
assertion. Enfin, ¢ étant 3-primaire, la proposition 2.2.1 montre que 3
divise b. On tire alors de [8], par des arguments analogues a ceux employés
dans la démonstration de la proposition 2.2.1, que dans N/L, I'idéal &,
est inerte si / ne divise pas b et décomposé si / divise b. Notre résultat est
donc conséquence de la proposition 3.1.
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2) Si p # 1, la proposition 2.2.6 montre que les idéaux premiers de L
au-dessus de p sont ramifiés dans N/L. Si p = [, alors j = O et onale
méme résultat. On conclut alors a I'aide de la proposition 3.1.

3) La proposition 2.2.6 montre que les idéaux premiers de L au-dessus
de p sont non ramifiés dans N/L; en conséquence, ils sont inertes ou décom-
posés. Ils sont décomposes si et seulement si les idéaux premiers de Q()

au-dessus de p sont décomposés dans K (¢, LJE i.e si et seulement si &
est une puissance -iéme dans les complétes de K (¥) en les idéaux premiers
qui divisent p. On sait (par exemple [4]) qu’il en est ainsi si et seulement
si & est une puissance -iéme dans les complétés de K en les idéaux premiers
qui divisent p. D’aprés le lemme de Hensel, il en est ainsi si et seulement si ¢
est une puissance l-iéme modulo les idéaux premiers de K qui divisent p.

Comme de plus &€ est une puissance /-ieme, il en est ainsi si et seulement si &
est une puissance -iéme modulo un des idéaux premiers de K qui divisent p;

nos assertions a) et b) résultent donc de la proposition 3.1.

d
De plus, on vérifie facilement que si p # (=) mod /, alors p n’est
p

pas totalement décomposé dans L; on déduit donc du lemme 3.3 et de la

.\ d
proposition 3.1 que lon est dans le cas a). Enfin, si p = (—) mod /,
p

d . d
alors(;) # 0. Si (;) = 1 (et donc p = 1 mod /) alors p se décompose

dans K en le produit de deux idéaux premiers p et p. Si £ est une puis-
p—1
sance J-iéme modulo p, alors ¢ ' est congru & 1 modulo p. Mais EE
p—1
= M, donc (£&) ' = MP ! est congru a2 1 modulo p. Il en résulte que

p—1
l

¢

est aussi congru a 1 modulo p. Par conjugaison, on en déduit que
p—1 -1

é»'h est congru a 1 modulo p, donc ép_’_—est congru a 1 modulo p, donc

bg-_1 est divisible par p. Réciproquement, si p divise b,_y, alors &2;’-1
l p-1
-

est congru & a,-;/2 modulo p. En conséquence, (5 ' = MP1 est

1
congru A (a,-1/2)% modulo p. Mais M?~! est congru & 1 modulo p,

l
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donc g, 1/2 est une puissance /-iéme modulo p et donc &, qui est

l .
congru a a,_;/2 modulo p, est une puissance /-iéme modulo p. On
1

conclut en remarquant que, s’il existe un k divisant l_)—i_ tel que p divise

by, alors p divise b,_;. Pour terminer notre démonstration il ne reste

1
d ,
plus que le cas (=)= —1 et p = —1 mod /. Dans ce cas, il y a un
p

seul idéal premier de K au-dessus de p, notons le p. Si & est une
p+1

puissance /iéme modulo p, alors ¢ ' est congru 3 un rationnel mo-

dulo p; mais ./ d n’est pas congrue a un rationnel modulo p, donc p
p+1

divise bp .1- Réciproquement, si p divise b1, alors § ! est congru |
1 l
+1
. : 2= (-1) ‘ |
a un rationnel modulo p, donc & est congru a 1 modulo p ce

qui implique que ¢ est une puissance /icme modulo p. Enfin, on

conclut comme précédemment en remarquant que, si il existe un k
p+1

1 . -
divisant % tel que p divise b,, alors p divise b ! .

4) APPLICATIONS

»

4.1. Corps tchébychéviens non ramifiés

Nous allons étudier les corps tchébychéviens dont la cl6ture galoisienne
N est non ramifiée sur L. L’existence de tels corps implique la divisibilité
par / du nombre de classes du corps L; nous reviendrons sur cet aspect aux
paragraphes 4.2 ¢t 4.3. On a le théoréme suivant:

: 1 - |
THEOREME 4.1.1. Soit & = 5 (a+b./ d) un entier du corps K dont

la norme est la puissance l-i€éme d’un entier rationnel impair M. Si les trois
conditions suivantes sont vérifiées: 1) le polynome P, (X; M) — a n’a pas
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