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donc \ est, dans ^(0, congru à une puissance /-ième modulo £'C~1)/2

mais pas modulo £'1+(z~1)/2; on a donc s' I - (/-1)/2 (/+1)/2.
Si / ne divise pas d, l'indice de ramification de (Q/if est / — 1 et donc £

est, dans if(Q, congru à une puissance /-ième modulo mais pas

modulo £'*; on a donc s' l - (/— 1) 1, C.Q.F.D.
En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) Décomposition des nombres premiers dans T

On désigne toujours par T un corps tchébychévien de degré premier /,

par £ un entier quadratique définissant T et assujetti à la condition imposée

au début de la partie 2 de ce travail, par N la clôture galoisienne de T et

par L le sous-corps d'indice l de N. De plus, si p est un nombre premier,
on note (p)L et (p)T les idéaux principaux de L et F engendrés par p. Enfin,

pour alléger la rédaction, on suppose dans toute cette partie que le degré
de 2V7Q est / (/— 1).

On a la proposition suivante :

Proposition 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p ; on note pL / 'intersection de p et de L.

a) Si pL est inerte dans N/L, alors p est inerte dans T (c 'est-à-dire

(p)T est un idéal premier de T).
b) Si pL est ramifié dans N/L, alors p est totalement ramifié dans T

(i.e. l'idéal (p)T est la puissance l-ième d'un idéal premier de T).
c) Si pL est décomposé dans N/L et si (p)L (qi...q^p)ep où q1?..., q9p

sont des idéaux premiers de L distincts deux à deux et de degré résiduel
fp9 on a (p)T ^3 ^ßgp)ep où '^3, ?figp sont des idéaux premiers
de T distincts deux à deux, le degré résiduel de ^3 étant 1 et les degrés
résiduels des ^ étant fp.

Démonstration.

a) L'hypothèse implique que le degré résiduel de p dans N/Q est divisible
par /. Posons pr p n T. Ce degré résiduel est le produit du degré résiduel
de pr dans T/Q par le degré résiduel de p dans N/T. L'extension N/T étant
galoisienne, ce dernier doit diviser le degré de l'extension N/T; il est donc
premier à /. En conséquence / divise le degré résiduel de pT dans T/Q.
Le degré de T/Q étant /, on a le résultat cherché.
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b) Même démonstration qu'au a) en remplaçant « degré résiduel »
par « indice de ramification ».

c) Notons <Ti, a2,...,a,les/ automorphismes de l'extension N/L en
convenant que est l'identité. Pour 1, / on pose p,- cr;(p)
(donc px p); par hypothèse les p; sont distincts deux à deux.

On désigne par G_ t (p.) le groupe de décomposition de p;; l'ordre de
G-i (P.) est epfpqui est premier à /, donc le corps des invariants de G_ 1 (p;)

contient au moins un conjugué de T;quitte à remplacer par un de ses
conjugués, on peut donc supposer que T'est inclus dans G_1 (pj. On pose

Vut P(° T et T(l) ^T1 (T).Deplus on note le complété de

en p x et 1 adherence de T^^ dans N. Avec nos choix des indices, on
a t(1) T et T est le corps Qp des nombres p-adiques, ce qui signifie que
p1; Test non ramifié et de degré résiduel 1 dans D'autre part, si / > 1,

le composé T.r(,) est N, donc le composé T. T( i) est N et donc T(i) N.
Cela signifie que le degré résiduel et l'indice de ramification de pt dans
N/Q, qui sont respectivement égaux à ep et fp, sont égaux à ceux de
Pi n r(0 dans T('>/Q. Mais (toujours par le choix de nos indices) ceux-ci
sont égaux à ceux de p; n Tp,.,r dans T/Q. Enfin, l'extension N/T
étant galoisienne, si pk/r p; r alors il existe un t dans Gai (N/T) tel
que t (pj.) — pj. Mais pkn Lpj n LpL, donc la restriction de tà L est dans le groupe de décomposition de pL dans L/Q. Ce groupe est

I- 1
d ordre epfp donc t est dans le sous-groupe de Gai (N/T) d'ordrel-l g"
—— En conséquence, parmi les l -1 idéaux p2 r,..., p, r il y en a au9p
moins gp distincts. On a donc trouvé, dans T, au dessus de p, un idéal
premier non ramifié de degré résiduel 1 dans T/Q et une collection d'au
moins gp idéaux premiers d indice de ramification cp et de degré résiduel fdans T/Q. Comme |T:Q] / 1 + gpepfp, cette collection d'idéaux
premiers est constituée d'exactement gp éléments et on a trouvé tous les
idéaux premiers de T au dessus de p; cela achève la démonstration.

On rappelle (voir 2.1) que j1 ou 0 suivant que £ est ou n'est pas
/-primaire et que, si c est le plus grand entier rationnel divisant £, on a
posé cCi cl2avec sans puissance /-ième et n p. En plus,

P\ci
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pour tout nombre premier p, on pose (p)L c\9p)eP où les q, sont des

idéaux premiers de L distincts deux à deux de degré résiduel fp dans

L/Q. L'extension L/Q étant cyclique, le calcul de ep9 fp et gp est simple.

Avec ces notations, on a:

THÉORÈMe 3.2. La décomposition d'un nombre premier p dans T est

donnée par les règles suivantes :

1) si p / et si j 0 on a (/)r ll où 1 est un idéal premier de T.

Si j 1 on a (/)r l(ll5... ln)el où 1, Ii..., U sont des idéaux premiers

de L distincts deux à deux, le degré résiduel de I étant 1 et les degrés

résiduels des 1 i étant fu sauf si / 3, d 6 (mod 9) et si f - (a + bjd)
avec b non divisible par 9 auquel cas 3 est inerte dans T (i.e. (3)T est premier).

2) Si p divise g9 alors (p)T ^ où Sß est un idéal premier de T (si l

divise g et ^ 1, alors j 0 et on retrouve un cas de 1)).

3) Si p ^ l et si p ne divise pas g9 alors en supposant £ premier à p
(ce à quoi on peut toujours se ramener quitte à changer le £ définissant T),
on a deux cas

a) Si £ est, modulo un idéal premier de K au-dessus de p, une puissance

/-ième, alors (p)T ^3 ($i ^3ëp)ep où ^3, ^31?..., tygp sont des

idéaux premiers de T distincts deux à deux, le degré résiduel de ^3 étant 1

et les degrés résiduels des ^ étant fp.

b) Si Ç n'est pas, modulo un idéal premier de K au-dessus de /?, une

puissance /-ième, alors p est inerte dans T (i.e (p)T est un idéal premier).

/ d
De plus, si p fÉ - mod /, on est toujours dans le cas a). Sinon,

p

pour tout entier k, posons - («ak + bh yjd) ; on est dans les cas a)

1 d
ou b) suivant qu'il existe ou qu'il n'existe pas de k divisant -{p — (-))

L p
tel que p divise bk.

Démonstration. Nous aurons besoin du lemme suivant:
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Lemme 3.3. Soit p un nombre premier; si les idéaux premiers de L
qui contiennent p sont inertes dans N/L, alors p est totalement décomposé
dans L.

Démonstration du lemme. Soit p un idéal premier de N contenant p
et pL l'intersection de p et de L. Supposons pL inerte dans N/L et désignons

par G_ 1 et G0 les groupes de décomposition et d'inertie de p dans N/Q,
A

par JV_ et N0 les corps des invariants de G_ t et de G0, par N le complétéAAA A
de TV" en p et par N-t, N0 et L les adhérences de iVL1? N0 et L dans N.

A A A
Le corps N-x est le corps Qp des nombres /?-adiques. L'extension N0/N~ x

est cyclique non ramifiée et son degré est égal au degré résiduel de p dans
A

N/Q donc est divisible par /. Enfin, l'extension L/Qp est cyclique et son
indice de ramification est ep. Ce ep est aussi l'indice de ramification de p

A A
dans N/Q ; le composé L. N0 est donc une extension abélienne de Qp
dont l'indice de ramification et le degré résiduel sont égaux à l'indice de

A
ramification et au degré résiduel de p dans N/Q. En conséquence N est

A A
le composé LN0, donc est abélien sur Qp et donc GL t est un groupe abélien.
Mais, pL étant inerte dans N/L, l'ordre de G_ t est divisible par /. Le seul

sous-groupe abélien de Gai (N/Q) dont l'ordre divise l est Gai (N/L),
donc G_x est Gai (N/L) ce qui implique que p est totalement décomposé
dans L, C.Q.F.D.

Revenons à la démonstration du théorème:

1) Soit fi un idéal premier de N au-dessus de / et fiL l'intersection de fi
et L. Si j 0, alors fiL est ramifié dans N/L et on conclut avec la proposition

3.1. Si y 1, fiL est non ramifié dans N/L, donc est décomposé ou
inerte. Si fiL est inerte, alors, d'après le lemme 3.3, / est totalement décomposé

dans L. Le corps L étant une extension quadratique du sous-corps réel

maximal du corps des racines /-ièmes de l'unité, on a nécessairement 1 3.

Le corps L est alors Q(>/ — 3d) donc il faut d 6 (mod 9) pour que 3 soit
totalement décomposé dans L, ce qui démontre la première partie de notre
assertion. Enfin, £ étant 3-primaire, la proposition 2.2.1 montre que 3

divise b. On tire alors de [8], par des arguments analogues à ceux employés
dans la démonstration de la proposition 2.2.1, que dans N/L, l'idéal fiL
est inerte si / ne divise pas b et décomposé si / divise b. Notre résultat est

donc conséquence de la proposition 3.1.
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2) Si p # /, la proposition 2.2.6 montre que les idéaux premiers de L

au-dessus de p sont ramifiés dans N/L. Si p h alors j 0 et on a le

nême résultat. On conclut alors à l'aide de la proposition 3.1.

3) La proposition 2.2.6 montre que les idéaux premiers de L au-dessus

de p sont non ramifiés dans N/L; en conséquence, ils sont inertes ou décomposés.

Ils sont décomposés si et seulement si les idéaux premiers de Q(Ç)

au-dessus de p sont décomposés dans K(Ç, lyj0 i.e si et seulement si {
est une puissance./-ième dans les complétés de K(Q en les idéaux premiers

qui divisent p. On sait (par exemple [4]) qu'il en est ainsi si et seulement

si Ç est une puissance /-ième dans les complétés de K en les idéaux premiers

qui divisent p. D'après le lemme de Hensel, il en est ainsi si et seulement si {
est une puissance /-ième modulo les idéaux premiers de K qui divisent p.

Comme de plus ££ est une puissance /-ième, il en est ainsi si et seulement si £

est une puissance /-ième modulo un des idéaux premiers de K qui divisent p,
nos assertions a) et b) résultent donc de la proposition 3.1.

De plus, on vérifie facilement que si p —) mod /, alors p nest

pas totalement décomposé dans L\ on déduit donc du lemme 3.3 et de la

proposition 3.1 que l'on est dans le cas a). Enfin, si p s (-) mod /,

alors (-) ^ 0. Si (-) 1 (et donc 1 mod/) alors p se décompose
P P

dans K en le produit de deux idéaux premiers p et p. Si £ est une puis-
P-l

sance /-ième modulo p, alors £
1

est congru à 1 modulo p. Mais

p-1
M1, donc {££)

1 Mp ~1 est congru à 1 modulo p. Il en résulte que

P- 1

l 1

est aussi congru à 1 modulo p. Par conjugaison, on en déduit que
p-1 P"1

l r est congru à 1 modulo p, donc £
1

est congru à 1 modulo p, donc
p-i

est divisible par p. Réciproquement, si p divise i, alors £
1

~T~
P-l

est congru à ap_i/2 modulo p. En conséquence, (£0
1 Mp_1 est

~~r

congru à (ap-il2)2 modulo p. Mais M"'1 est congru à 1 modulo p,
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donc ßp-i/2 est une puissance /-ième modulo p et donc £, qui est
~T~

congru à ap-±/2 modulo p, est une puissance /-ième modulo p. On
i

p J

conclut en remarquant que, s'il existe un k divisant -y- tel que p divise

bk, alors p divise bp_1. Pour terminer notre démonstration il ne reste
~T~

plus que le cas (-) — 1 et p -1 mod /. Dans ce cas, il y a un
P

seul idéal premier de K au-dessus de p, notons le p. Si Ç est une
p+i

puissance /-ième modulo p, alors £
1

est congru à un rationnel
modulo p ; mais yf~d n'est pas congrue à un rationnel modulo p, donc p

divise b Réciproquement, si p divise bp+l9 alors £
1

est congru

i)
à un rationnel modulo p, donc £ est congru à 1 modulo p ce

qui implique que £ est une puissance /-ième modulo p. Enfin, on
conclut comme précédemment en remarquant que, si il existe un k

p +1
divisant —tel que p divise bk, alors p divise b 1

4) Applications

4.1. Corps tchébychéviens non ramifiés

Nous allons étudier les corps tchébychéviens dont la clôture galoisienne

N est non ramifiée sur L. L'existence de tels corps implique la divisibilité

par / du nombre de classes du corps L ; nous reviendrons sur cet aspect aux

paragraphes 4.2 et 4.3. On a le théorème suivant:

Théorème 4.1.1. Soit Ç - (a+b^J~d) un entier du corps K dont

la norme est la puissance /-ième d'un entier rationnel impair M.. Si les trois
conditions suivantes sont vérifiées : 1) le polynôme Pt (X; M) — a n'a pas
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