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On définit j de la maniére suivante: on pose j = 1si / ne divise pas la |
norme de ¢ et si, pour les entiers i premiers a /, le produit b,d est divisible

par /2 dés qu’il est divisible par / et on pose j = 0 sinon. De plus si ¢ est
le plus grand entier naturel divisant & et si ¢ = ¢, ¢, ol ¢, est sans puis-

| I -1
sance /-i€éme, on pose g = [] p . Enfin on pose A = >
P|IC1
d
-) =1
)
I +1

suivant que / est congru & 1 ou & 3 modulo 4 et on désigne par

(/,d) le p.g.c.d de [ et de d. Le discriminant A de T est alors donné par

la formule suivante:
B ll—2j l 5 l(l—-l)/z gl—l

(2.1.2) 4] = L

(On rappelle que-o est le discriminant du corps K = Q (4 /d)).

2.2. Démonstration de la formule

Rappelons qu'un élément ¢ de K est dit / primaire si il est étranger

a [ et si I'extension de Kummer K (¢, '\/&)/K ({) est non ramifiée au-
dessus de /. On a alors la proposition suivante:

PROPOSITION 2.2.1. L’entier j étant celui défini au paragraphe précédent,
ona j=1 ou O suivant que & est ou n’est pas I-primaire. -

Démonstration. Pour plus de concision, nous supposerons dans cette
démonstration que le corps K n’est pas inclus dans Q ({); le cas ou K est
inclus dans Q ({) se traite de fagon analogue. Nous désignons par £ un idéal
premier de K ({) au dessus de / et par [ l'intersection de € et de K. On
vérifie que I'indice de ramification de £ sur Q est / — 1, donc ([7], § 39, .
satz 118-119; [8]) £ est [-primaire si et seulement si il existe dans K ({) un
¢lément x tel que I’on ait la congruence suivante:

(*) &= x'(mod 8.

ou =




QIR | U
Montrons que (¥) est équivalente a la congruence suivante:

(**) E= yl» (mOd IZ)_ avec y dans K

Si @ est le seul idéal premier de K (0) au dessus de 1, alors en prenant
les normes dans I’extension K ({)/K, la congruence (*) implique Ny x (£)
= (Nxyx ) (mod ) d’onr &1 = z' (mod I?) avec z dans K ce qui
implique (**). Sinon, soit K; le corps de décomposition de I dans K O/K

et [, intersection de € et de K,. L’idéal & étant le seul idéal de K ({) au

dessus de 1; et le degré de K (0)/K, étant un raisonnement a1\1a10gue

a celui que I’on vient de faire montre que (*) implique I’existence d’un z,

~ -1

dans K, vérifiant la congruence ¢ 7= z} (mod 1%); Iidéal I étant totale-

ment décomposé dans K/K; cela implique I’existence d’un z dans K tel
-1 .

que & e (mod 1?) ce qui entraine (**). Réciproquement, si [ est
totalement ramifié dans K ({)/K, alors (**) implique ¢ = y* (mod 220~ 1)
ce qui donne (*). Sinon, / est ramifié dans K; désignons alors par 4 ’anneau
des entiers K. Le noyau de la surjection canonique de (4/1%)* sur (4/1%)*
est le sous groupe de (4/1%)* formé des classesdes 1 + klouk = 0, ...,1 — 1.
La congruence (**) implique donc I’existence d’un entier £ compris entre 0
et ] — 1 tel que & = (1+k!) y' (mod 13). En prenant la norme sur Q, il
vient M' = (1+kl)? (Ng,o () (mod /%) et donc 1 + klest une puissance
liéme modulo /2 i.e. modulo I'idéal I*. On a donc ¢ = x' (mod %) d’ou
¢ = x' (mod 3¢~ 1/2) ce qui implique (*) et achéve la démonstration de
'équivalence de (*) et (**).

Soit maintenant i un entier tel que / divise bd. On a N ko &)= M*"
== %(az,-2 +b?d). D’autre part b?d/4 est dans I'idéal [? (en effet, si / ne divise
pas d, alors [ divise b; donc /? divise b? et, si I divise d, alors / est dans 1?).
Le rationnel a;/4 est donc une I-unité qui est une puissance Il-iéme
modulo 12; il en est donc de méme de 2/a;. En conséquence &¥ est une

puissance -iéme modulo I? si et seulement si (2/a,) ' = 1 + b, a7t \/E
en est une. Si /% ne divise pas b,d, alors 1 + b, a7’ \/ d est congru a
I modulo I mais pas modulo 1> donc n’est pas une puissance l-idme
modulo 2. Si /% divise bd et si I ne divise pas d alors 1 + b, a;? \/ d est
congru & 1 modulo 12 donc est une puissance /-iéme modulo /2. Si /2 divise

bid et si I divise d, alors 1 + b, a;" \/d est congru & 1 modulo 1® donc est
uie puissance /-iéme modulo 12 ce qui achéve la démonstration.
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Venons-en maintenant 3 la démonstration de la formule 2.1.2. Pour
alléger la rédaction, nous supposerons encore que K n’est pas inclus dans
Q (0); le cas ou K est inclus dans Q (0) se traite de maniére analogue. Cette
démonstration repose essentiellement sur les méthodes décrites dans [8],
nous adopterons donc pour I’essentiel les notations et la terminologie de
cet ouvrage;

On sait ([8], chap. IV, prop. 6, cor. 1) que le discriminant A de T est Ie
conducteur d’Artin de la représentation de Gal (N/Q) induite par la repré-
sentation triviale de Gal (N/T). Pour calculer ce conducteur désignons par
Gdr=1, ..., 1-1 les I — 1 représentations non triviales de degré 1 de
Gal (N/L), par 1y, et 1 n/r les représentations triviales de Gal (N/Q) et
de Gal (N/T) et, pour toute représentation e d’un sous-groupe de Gal (N/Q)

par p* la représentation induite par e sur Gal (N/Q). On a alors Iégalité |} |
-1

(—-n1 ;}/T = (=1 1y + ) yx comme on le vérifie en calculant Il
k=1

caractere de chacun des deux membres. De cette égalité on tire, en prenant

les conducteurs d’Artin, I’égalité
1 -1

(2.2.2) AT =TT f ()
k=1
ol f () est le conducteur d’Artin de y ;.
Le conducteur d’Artin de y; est le produit du discriminant d; du
corps L par la norme sur Q du conducteur d’Artin de y,. Ce dernier étant
le conducteur de I’extension abélienne N/L, la formule 2.2.2 donne

(2.2.3) | 4 = dy Np,o ()

ou { est le conducteur de ’extension abélienne N/L.
Le calcul de d}, ne pose pas de difficulté, on trouve:

5 1a-1D/2 .
I}-2 r i | = 1mod 4
(0, d). v
(2.2.4) d, = 1 -2 5 7 a-12
S1 | = 3mod 4
| (L) LG a)

Le calcul de A est donc ramené a celui du conducteur § de I’extension
N/L. Cette extension étant cyclique de degré / et le corps N étant galoisien
sur Q, I'idéal { est de la forme

(2.2.5) f=((18x (ITp)
e
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oll x est un entier naturel, ou & décrit les idéaux premiers de L qui
contiennent / et o p décrit les idéaux premiers de L étrangers a / et ramifics
dans N. Avec les notations introduites dans 2.1, on a la proposition suivante:

PROPOSITION 2.2.6. Soit p un nombre premier différent de 1. Les idéaux
premiers de L contenant p se ramifient dans N si et seulement si p divise

d |
¢, et (1—)) = 1 (on convient que (5) = 1 si et seulement si 2 est décom-

posé dans K).

Démonstration. Soit p’ un idéal premier de K ({) au dessus de p. Posons
P=p nKetp =p' n L. Le comportement de p dans N/L est identique

a celui de p’ dans N ({)/K ({). Mais N ({) = K (¢, ’\/é) donc p’ se ramifie
dans N (0)/K () si et seulement si son exposant dans I'idéal de X ({) engendré
par & est premier a /. Le degré de K ({)/K étant premier a /, ceci est équivalent
a ce que I’exposant de p dans I'idéal de K engendré par £ est lui méme
premier a /. La norme de £ étant une puissance /-iéme, cela implique que p

d
se décompose dans K i.e. que (—) = +1. Dans ce cas, en rempla-
p

cant éventuellement § par son conjugué, I'idéal de K engendré par & est
de la forme (p)™ p™ a ou (p) est Iidéal principal de K engendré par p,
ol x,; et x, sont deux entiers naturels et ou a est un idéal de K étranger
a p. Il résulte de la définition de c; que p divise ¢, si et seulement si /
ne divise pas x;. Mais 2x; + x, est I’exposant de p dans la norme de &
donc est divisible par /. En conséquence x; + x, qui est ’exposant de p
dans I’idéal engendré de K engendré par & est divisible par / si et seulement
si / divise x, et donc si et seulement si p ne divise pas ¢; ce qui achéve la
démonstration.

Il reste a calculer le x de la formule 2.2.5. Pour cela, on choisit un idéal
premier " de K({) au dessus de [etonpose [ = ' nKet & = &' n L.
On désigne respectivement par s et s’ les plus grands entiers tels que les
groupes de ramifications d’indice inférieur s et s" de & et &' dans N/L et
N (D)/K ({) sont non triviaux (s et s’ sont donc des entiers relatifs supérieurs
ou égaux a —1). L’extension N/L étant cyclique de degré I, on sait que
x = s+ 1. On sait aussi que s = —1 est équivalent 4 la non ramification
de L dans N/Ldoncas' = —1.Sis # —1, les valeurs de s et s’ sont lies
par le lemme suivant:
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LEMME 2.2.7. On suppose s' # —1. On a alors s = s'12 ou s =g

suivant que £ est ou n’est pas ramifié dans K ({)/L.
A A A | ' A

Démonstration. On désigne respectivement par L, N, K ({) et N (0) les
complétés de L, N, K ({) et N ({) au dessus de /. Le degré de K (O/L étant
premier a /, les groupes de ramifications d’indice strictement positif de £
dans NJ/L sont identiques & ceux de ce méme £ dans N (/L et a ceux de
L’ dans N ({)/K (). Posons G = Gal (N(C)/L) et H = Gal (N(C)/N).
Alors toujours avec les notations de [8], chap. IV), v défini par
V= on /N estle plus grand réel tel que G* est non trivial. Mais G
est cyclique d’ordre / et H est d’ordre 2, donc v est le plus grand réel tel
que G° H/H est non trivial. D’autre part G° H/H = (G/H)" et G/H

A A
= Gal (N/L) donc {3} (v) est le plus grand réel tel que Gal (N/L) “pﬁ/’i -
est non trivial ce qui signifie que s = 32 (). Enfin ¢ . ()
= JFn o N/t 8) = ¢ RN (s"); onachéve la démonstration en remar-
quant que {5 /5 est la multiplication par 1/2 ol Iidentité suivant que £
est ou n’est pas ramifié dans K ({)/L.
In ne nous reste donc plus qu’a calculer s'; c’est Pobjet de la proposition

suivante:

ProposITION 2.2.8. Si [ divise ¢; ona s = I Sinon, si j =1 ona
I +1

’

s = —=1; si j=0 ona s =

ou 1 suivant que | divise ou

ne divise pas d.

Démonstration. Si [ divise ¢, alors [ divise . Par hypothése [ ne divise
pas &, donc I’exposant de [ dans I’idéal principal engendré par ¢ est premier
a l. Le degré de K ({)/K étant premier a /, il en est de méme de I’exposant
de £’ dans I'idéal de K ({) engendré par ¢ et donc ([7D) on a s’ = [,

Si I ne divise pas c;, il résulte des hypothéses faites sur ¢ que [ ne divise
pas ¢. Si j =1, alors & est [-primaire donc £’ est non ramifiée dans
N (/K () doncs’ = —1.8ij = 0, on désigne par Y le plus grand entier
tel que ¢ est, dans K (), une puissance /-iéme modulo £'Y. On sajt ()
que Y << /etques’ = [ — Y. 1l ne reste donc plus qu’a calculer Y. On a vu
dans la démonstration de la proposition 2.2.1 que j = 0 est équivalent &
ce que ¢ est, dans K, congru i une puissance /-iéme modulo I mais pas

et

modulo /. Si / divise d, Iindice de ramification de K (O)/K est - 5
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donc £ est, dans K (¢), congru A une puissance l-iéme modulo £'¢~1/2

mais pas modulo 1*0¢"D/2; on a donc s =1— (I-1)2 = (I+1)/2.
Si I ne divise pas d, I'indice de ramification de K ({)/K est [ — 1 et donc ¢
est, dans K (), congru A une puissance l-iéme modulo £'~' mais pas
modulo 2% onadoncs’ =1— (I—-1) = 1, C.Q.F.D.

En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) DECOMPOSITION DES NOMBRES PREMIERS DANS T

On désigne toujours par T un corps tchébychévien de degré premier /,
par & un entier quadratique définissant 7 et assujetti & la condition imposée
au début de la partie 2 de ce travail, par N la cloture galoisienne de T et
par L le sous-corps d’indice / de N. De plus, si p est un nombre premier,
on note (p);, et (p)r les idéaux principaux de L et T engendrés par p. Enfin,
pour alléger la rédaction, on suppose dans toute cette partie que le degré
de N/QestI(I—1).

On a la proposition suivante:

PROPOSITION 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p; on note p; l’intersection de p et de L.

a) Si pp estinerte dans N|L, alors p est inerte dans T (c’est-d-dire
(p)r est un idéal premier de T).

b) Si p; est ramifié dans N|L, alors p est totalement ramifié dans T
(i.e. l'idéal (p)r est la puissance I-iéme d’un idéal premier de T).

c) Si pg est décomposé dans N|L et si (p);, = (ql...qép)e" OU (y, «ee g,
sont des idéaux premiers de L distincts deux a deux et de degré résiduel
fooona (p)r = P (P ... ‘ng)ep ouP, P, ..., EBgP sont des idéaux premiers

de T distincts deux a deux, le degré résiduel de P étant 1 et les degrés
résiduels des B, étant f,.

Démonstration.

a) L’hypothése implique que le degré résiduel de p dans N/Q est divisible
par L. Posons p; = p N T. Ce degré résiduel est le produit du degré résiduel
de py dans 7/Q par le degré résiduel de p dans N/T. L’extension N/T étant
galoisienne, ce dernier doit diviser le degré de I’extension N/T’; il est donc
premier a L. En conséquence / divise le degré résiduel de p; dans 7/Q.
Le degré de T/Q étant /, on a le résultat cherché.
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