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On définit / de la manière suivante: on pose j 1 si / ne divise pas la
norme de £ et si, pour les entiers i premiers à /, le produit btd est divisible
par l2 dès qu'il est divisible par / et on pose j 0 sinon. De plus si c est
le plus grand entier naturel divisant £ et si ç c1 cl où c1 est sans puis-

7-1
sance /-ième, on pose g P • Enfin on pose X ou

i
2

Pfl
(?>-»

P
^ + l
—-— suivant que / est congru al ou à 3 modulo 4 et on désigne par

(/, J) le p.g.c.d de / et de d. Le discriminant À de T est alors donné par
la formule suivante:

ll-2j\ô\(l-l)/2 l-l
(2.1.2) \A|='11

(On rappelle que-<5 est le discriminant du corps K Q {y/d)).

2.2. Démonstration de la formule

Rappelons qu'un élément £ de K est dit / primaire si il est étranger
à / et si l'extension de Kummer K (C, lyj0/K (Q est non ramifiée au-
dessus de /. On a alors la proposition suivante:

Proposition 2.2.1. L 'entier j étant celui défini au paragraphe précédent,
on a 7=1 ou 0 suivant que Ç est ou n 'est pas l-primaire. •

Démonstration. Pour plus de concision, nous supposerons dans cette
démonstration que le corps K n'est pas inclus dans Q (0; le cas où K est
inclus dans Q (0 se traite de façon analogue. Nous désignons par £ un idéal
premier de K (0 au dessus de / et par 1 l'intersection de £ et de K. On
vérifie que l'indice de ramification de £ sur Q est / - 1, donc ([7], § 39,

satz 118-119; [8]) ^ est /-primaire si et seulement si il existe dans K(Ç) un
élément x tel que l'on ait la congruence suivante:

(*) £ xl (mod £*).
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Montrons que (*) est équivalente à la congruence suivante:

(**) £ y (mod l2) avec y dans K.

Si £ est le seul idéal premier de K (0 au dessus de I, alors en prenant
les normes dans l'extension K (0/K, la congruence (*) implique NK(0/K (0

(Nk(0/k {x))1 (mod £') d'où 0"1 zl (mod l2) avec z dansi£ ce qui

implique (**). Sinon, soit Kx le corps de décomposition de 1 dans K (QjK
et lj l'intersection de £ et de K±. L'idéal £ étant le seul idéal de K(Ç) au

/ - 1
dessus de li et le degré de K (QjK, étant un raisonnement analogue

à celui que l'on vient de faire montre que (*) implique l'existence d'un z1

i- î
dans K1 vérifiant la congruence f 2 z\ (mod l2); l'idéal 1 étant totalement

décomposé dans K/K± cela implique l'existence d'un z dans K tel
z-i

2

que £ zl (mod I2) ce qui entraîne (**). Réciproquement, si 1 est

totalement ramifié dans K(QjK, alors (**) implique £ y1 (mod £2(/~1})
ce qui donne (*). Sinon, 7 est ramifié dans K; désignons alors par A l'anneau
des entiers K. Le noyau de la surjection canonique de (^4/l3)* sur (Aj\2)*
est le sous groupe de (^4/l3)* formé des classes des 1 + kloixk 0,1.
La congruence (**) implique donc l'existence d'un entier k compris entre 0

et / - 1 tel que £ (1 +kl) y1 (mod I3). En prenant la norme sur Q, il
vient M1 (1 +kl)2 (Nk/q (y))1 (mod l2) et donc 1 + kitst une puissance
/-ième modulo /2 i.e. modulo l'idéal l4. On a donc £ xl (modi3) d'où

i xl (mod £3(ï_1)/2) ce qui implique (*) et achève la démonstration de

l'équivalence de (*) et (**).
Soit maintenant i un entier tel que / divise btd. On a NK/Q (0) Mil
\ (af +bfd). D'autre part bfd/4 est dans l'idéal l2 (en effet, si / ne divise

pas 7, alors / divise bt donc l2 divise bf et, si / divise d, alors / est dans I2).
Le rationnel af/4 est donc une ï-unité qui est une puissance /-ième
modulo l2; il en est donc de même de Ija^ En conséquence 0 est une
puissance /-ième modulo l2 si et seulement si (2/af)0 1 + d
en est une. Si l2 no divise pas btd, alors 1 + bio^1 y/d est congru à
1 modulo 1 mais pas modulo I2 donc n'est pas une puissance /-ième

modulo l2. Si l2 divise btdet si / ne divise pas d alors 1 + bt a]1 y]d est
congru à 1 modulo l2 donc est une puissance /-ième modulo /2. Si /2 divise

M et si / divise d, alors 1 + bt a]1 yfd est congru à 1 modulo I3 donc est
une puissance /-ième modulo I2 ce qui achève la démonstration.
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Venons-en maintenant à la démonstration de la formule 2.1.2. Pour
alléger la rédaction, nous supposerons encore que n'est pas inclus dans
Q (0 Ie cas ou Kest inclus dans Q (Q se traite de manière analogue. Cette
démonstration repose essentiellement sur les méthodes décrites dans [8],
nous adopterons donc pour l'essentiel les notations et la terminologie de
cet ouvrage.

On sait ([8], chap. IV, prop. 6, cor. 1) que le discriminant A de Test le
conducteur d Artin de la représentation de Gal (IV/Q) induite par la
représentation triviale de Gal (N/T).Pour calculer ce conducteur désignons par
(Xk)k i, i-i les /- 1 représentations non triviales de degré 1 de
Gal (N /L),par1

n,q et 1N/T les représentations triviales de Gal (IV/Q) et
de Gai (N/T) et, pour toute représentation p d'un sous-groupe de Gai (IV/Q)
par p* la représentation induite par p sur Gai (IV/Q). On a alors l'égalité

l- 1

(/_1) ljv/r (^-1) 1jv/q + Yjxlcommeon le vérifie en calculant le
k l

caractère de chacun des deux membres. De cette égalité on tire, en prenant
les conducteurs d'Artin, l'égalité

(2.2.2) -«-'-'ri /(*;>
k 1

OÙ/(-/k) est le conducteur d'Artin de y *k.

Le conducteur d'Artin de yk est le produit du discriminant du
corps Lpar la norme sur Q du conducteur d'Artin de yk. Ce dernier étant
le conducteur de l'extension abélienne N/L, la formule 2.2.2 donne

(2.2.3) ^ dLNL/Q (f)
où f est le conducteur de l'extension abélienne N/L.

Le calcul de dL ne pose pas de difficulté, on trouve :

(2.2.4) ÂL —

[(à]
-T—1

d) 1(1, d)\

ll~2

Q

(1-DI2

SI / 1 mod 4

si l 3 mod 4

Le calcul de A est donc ramené à celui du conducteur f de l'extension
N/L. Cette extension étant cyclique de degré / et le corps N étant galoisien
sur Q, l'idéal f est de la forme

(2.2.5) f (n-Ö)* X (I7p)
fi
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où x est un entier naturel, où £ décrit les idéaux premiers de L qui

contiennent / et où p décrit les idéaux premiers de L étrangers à / et ramifiés

dans N. Avec les notations introduites dans 2.1, on a la proposition suivante :

Proposition 2.2.6. Soit p un nombre premier différent de L Les idéaux

premiers de L contenant p se ramifient dans N si et seulement si p divise

cl et (-) 1 (on convient que (-) =1 si et seulement si 2 est décomposé

dans K).

Démonstration. Soit p' un idéal premier de K (0 au dessus de p. Posons

^ p' n A et p p' n L. Le comportement de p dans N/L est identique

à celui de p' dans N(0/K(0. Mais N(0 K(0 ly/Ç) donc p' se ramifie
dans N (Q/K (0 si et seulement si son exposant dans l'idéal de K (0 engendré

par £ est premier à /. Le degré de K (Q/K étant premier a /, ceci est équivalent
à ce que l'exposant de p dans l'idéal de K engendré par £ est lui même

premier à /. La norme de £ étant une puissance /-ième, cela implique que p

se décompose dans K i.e. que (-) +1. Dans ce cas, en rempla-
P

çant éventuellement ^3 par son conjugué, l'idéal de K engendré par £ est
de la forme (p)*1 p*2 a où (p) est l'idéal principal de K engendré par p,
où x1 et x2 sont deux entiers naturels et où a est un idéal de K étranger
à p. Il résulte de la définition de c1 que p divise cx si et seulement si /
ne divise pas x±. Mais 2x± + x2 est l'exposant de p dans la norme de £

donc est divisible par /. En conséquence x1 + x2 qui est l'exposant de p
dans l'idéal engendré de K engendré par £ est divisible par / si et seulement
si / divise x± et donc si et seulement si p ne divise pas c± ce qui achève la
démonstration.

Il reste à calculer le x de la formule 2.2.5. Pour celà, on choisit un idéal
premier fi' de K(0 au dessus de / et on pose 1 fi'nletfi £'ni.
On désigne respectivement par s et s' les plus grands entiers tels que les

groupes de ramifications d'indice inférieur s et s' de £ et fi' dans N/L et
N (Q/K (0 sont non triviaux (s et sont donc des entiers relatifs supérieurs
ou égaux à -1). L'extension N/L étant cyclique de degré /, on sait que
x s + 1. On sait aussi que s -1 est équivalent à la non ramification
de fi dans N/L donc à s' — 1. Si s # — 1, les valeurs de s et s' sont liées

par le lemme suivant:
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Lemme 2.2.7. On suppose s'#-1. On a alors s F/2 ou s s'
suivant que 2est ou n 'est pas ramifié dans (Q/L

Démonstration. On désigne respectivement par L, K(Q et N(Q les
complétés de L, N, K(Q et N(Qau dessus de /. Le degré de L(Q/L étant
premier à l, les groupes de ramifications d'indice strictement positif de
dans NILsont identiques à ceux de ce même dans A (Q/L et à ceux de

2'dans N (Q/L (fi). Posons G Gal (N (Q/L) Gai
Alors toujours avec les notations de [8], chap. IV), v défini par
v 91v({j/ÄCO est le plus grand réel tel que G" est non trivial. Mais G"
est cyclique d'ordre let Hest d'ordre 2, donc v est le plus grand réel tel
que G"H/ Hest non trivial. D'autre part G" H!H (G/H)v et G/H

Gai (N/L) donc <^fL (v) est le plus grand réel tel que Gai (A/LUA/K
v TN/L(v)

est non trivial ce qui signifie que s Enfin ^ £* (v)
'I'n/l ° ^ n(q/l (s')— 'j'ivio/wC5'); on achève la démonstration en remarquant

que est multiplication par 1/2 où l'identité suivant que £
est ou n'est pas ramifié dans K (£)

Inne nous reste donc plus qu'à calculer s'; c'est l'objet de la proposition
suivante:

Proposition 2.2.8. Sildivise c1 on a s' /. Sinon, si j 1 on a

s -1 ; si y 0 on a s'— ou 1 suivant que l divise ou

ne divise pas d.

Démonstration. Si / divise c1 alors I divise £. Par hypothèse l' ne divise
L donc 1 exposant de I dans 1 ideal principal engendré par é est premier

à /. Le degré de K(Q/L étant premier à /, il en est de même dp l'exposant
de 2'dans l'idéal de K(Qengendré par £ et donc ([7]) on a s' l.

Si / ne divise pas cuilrésulte des hypothèses faites sur £ que I ne divise
pas Q Si j 1,alors£ est /-primaire donc 2' est non ramifié dans
A(Q/L(Q donc s— 1. Si j 0, on désigne par Fie plus grand entier
tel que £ est, dans K (Q, une puissance /-ième modulo 2'Y. On sait ([7])
que Y< / et que s'l-Y. H ne reste donc plus qu'à calculer F. On a vu
dans la démonstration de la proposition 2.2.1 que j 0 est équivalent à
ce que £ est, dans K,congruà une puissance /-ième modulo I mais pas

modulo l2. Si / divise d, l'indice de ramification de (Q/L est
~ 1

et
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donc \ est, dans ^(0, congru à une puissance /-ième modulo £'C~1)/2

mais pas modulo £'1+(z~1)/2; on a donc s' I - (/-1)/2 (/+1)/2.
Si / ne divise pas d, l'indice de ramification de (Q/if est / — 1 et donc £

est, dans if(Q, congru à une puissance /-ième modulo mais pas

modulo £'*; on a donc s' l - (/— 1) 1, C.Q.F.D.
En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) Décomposition des nombres premiers dans T

On désigne toujours par T un corps tchébychévien de degré premier /,

par £ un entier quadratique définissant T et assujetti à la condition imposée

au début de la partie 2 de ce travail, par N la clôture galoisienne de T et

par L le sous-corps d'indice l de N. De plus, si p est un nombre premier,
on note (p)L et (p)T les idéaux principaux de L et F engendrés par p. Enfin,

pour alléger la rédaction, on suppose dans toute cette partie que le degré
de 2V7Q est / (/— 1).

On a la proposition suivante :

Proposition 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p ; on note pL / 'intersection de p et de L.

a) Si pL est inerte dans N/L, alors p est inerte dans T (c 'est-à-dire

(p)T est un idéal premier de T).
b) Si pL est ramifié dans N/L, alors p est totalement ramifié dans T

(i.e. l'idéal (p)T est la puissance l-ième d'un idéal premier de T).
c) Si pL est décomposé dans N/L et si (p)L (qi...q^p)ep où q1?..., q9p

sont des idéaux premiers de L distincts deux à deux et de degré résiduel
fp9 on a (p)T ^3 ^ßgp)ep où '^3, ?figp sont des idéaux premiers
de T distincts deux à deux, le degré résiduel de ^3 étant 1 et les degrés
résiduels des ^ étant fp.

Démonstration.

a) L'hypothèse implique que le degré résiduel de p dans N/Q est divisible
par /. Posons pr p n T. Ce degré résiduel est le produit du degré résiduel
de pr dans T/Q par le degré résiduel de p dans N/T. L'extension N/T étant
galoisienne, ce dernier doit diviser le degré de l'extension N/T; il est donc
premier à /. En conséquence / divise le degré résiduel de pT dans T/Q.
Le degré de T/Q étant /, on a le résultat cherché.
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