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différent de Q(,/—3) ol si 3 ne divise pas #, alors Gal (N/Q) est un sous-
groupe d’indice 2 du groupe précédent. |

Enfin, si £, et £, sont deux entiers de K dont les normes sont les puis-
sances n-iémes de rationnels mais qui, pour aucun diviseur premier / de n,
ne sont des puissances l-iémes dans K, on a la proposition suivante:

PROPOSITION 1.2.5. Les corps T; et T, coincident si et seulement
si &1 = ESq" ou k est un entier premier @ n et ot n est un élément de K.

Démonstration. Si 7T1 = T,, on voit facilement que K (¢, ”\/ fj
= K (¢, "\/ ¢,) et donc (théorie de Kummer) ¢; = &% " ol1 k est un entier
premier 4 n et ou ¢ est un élément de K (¢). On sait ([6] par exemple) que
cela implique une égalité &; = &% 4" avec n dans K. Réciproquement, si
&, = &5y on a ”\/El + "\/El = n"\/cfz’;_-l- ﬁ"\/zé‘. Posons = o +
B4, il vient "/&, + "JE = «("JEE + " /) + Bd (/-
" JEY). Les lemmes 1.1.1 et 1.2.2 montrent que "./&5 + " JEE et
'\/ d (”\/52-"\/ £X) sont dans T,, donc que T est inclus dans T, ; ces
corps ayant méme degré, on a 7, = T,. C.Q.F.D.

REMARQUE 1.2.6. Si n = 3, les formules de Cardan montrent que les
corps tchebycheviens coincident avec les corps cubiques non purs (un corps

pur étant un corps du type Q (3\/m—) avec m rationnel).

2) LE CALCUL DU DISCRIMINANT

Nous supposons maintenant que z est premier (impair); pour souligner
cette hypothése nous posons » = [. Nous allons calculer le discriminant A
du corps 7. Comme on pourra le constater sur la formule, ce discriminant Jl
n’est pas, en général, le discriminant du polyndme définissant 7. La for-
mule est donnée dans le premier paragraphe.

2.1. La formule

Nous supposerons dans toute cette partie que I’entier quadratique ¢
n’est divisible par la puissance /-i¢me d’aucun idéal premier de K qui divise /;
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tous les corps tchebycheviens sont obtenus a 1’aide de tels entiers (en effet,
Pidéal principal engendré par & s’écrit a'b ol a et b sont des idéaux entiers
et ol b n’est divisible par la puissance /-iéme d’aucun idéal premier; choi-
sissons dans la classe de @ un idéal ¢ premier & [ et désignons par « un
générateur de @~ c; le nombre o' est un entier de K qui n’est divisible par
la puissance l-iéme d’aucun idéal premier contenant / et le corps tcheby-
chevien défini par cet entier est celui défini par £). Pour énoncer la formule
du discriminant, nous aurons besoin de quelques préliminaires. Pour tout

entier i, on définit les entiers rationnels a@; et b; par I'égalité & = 3

(ai-l—bi\/ ;ZI on a alors le lemme suivant:

LemMe 2.1.1. On suppose que [ ne divise pas la norme de &, alors
I) il existe un entier © premier @ 1 tel que 1 divise le produit b.d (et

on peut toujours trouver un tel t divisant | — (7 )

II) si, pour un entier t premier & I, le produit b.d est divisible par 1?,
alors pour tout entier i premier & I, le produit b,d est divisible par 1% dés
qu’il est divisible par 1.

Démonstration
o e 4d
I) Si [ divise d, c’est clair. Si (?) = 1, alors &1 est congru a1
L d .
modulo / ie. &1 =141 %/_ avec o et [3 entiers rationnels.

On a donc b,_; = [P c’est-a-dire que [/ divise b;_;. De méme si (7)

= — 1, alors £'*! est congru A un entier rationnel modulo / et le méme
raisonnement montre que / divise b; 4 ;.

IT) Soit © un entier premier a [ tel que / divise b.d. 1l est facile de voir
que /* divise b,d si et seulement si £° est congru & un entier rationnel modulo
le carré d’un idéal premier de K au-dessus de /. On conclut en remarquant
qu’alors, pour tout entier i premier & / tel que &% est congru a un rationnel
modulo /, cet entier quadratique & est congru & un rationnel modulo /2.
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On définit j de la maniére suivante: on pose j = 1si / ne divise pas la |
norme de ¢ et si, pour les entiers i premiers a /, le produit b,d est divisible

par /2 dés qu’il est divisible par / et on pose j = 0 sinon. De plus si ¢ est
le plus grand entier naturel divisant & et si ¢ = ¢, ¢, ol ¢, est sans puis-

| I -1
sance /-i€éme, on pose g = [] p . Enfin on pose A = >
P|IC1
d
-) =1
)
I +1

suivant que / est congru & 1 ou & 3 modulo 4 et on désigne par

(/,d) le p.g.c.d de [ et de d. Le discriminant A de T est alors donné par

la formule suivante:
B ll—2j l 5 l(l—-l)/z gl—l

(2.1.2) 4] = L

(On rappelle que-o est le discriminant du corps K = Q (4 /d)).

2.2. Démonstration de la formule

Rappelons qu'un élément ¢ de K est dit / primaire si il est étranger

a [ et si I'extension de Kummer K (¢, '\/&)/K ({) est non ramifiée au-
dessus de /. On a alors la proposition suivante:

PROPOSITION 2.2.1. L’entier j étant celui défini au paragraphe précédent,
ona j=1 ou O suivant que & est ou n’est pas I-primaire. -

Démonstration. Pour plus de concision, nous supposerons dans cette
démonstration que le corps K n’est pas inclus dans Q ({); le cas ou K est
inclus dans Q ({) se traite de fagon analogue. Nous désignons par £ un idéal
premier de K ({) au dessus de / et par [ l'intersection de € et de K. On
vérifie que I'indice de ramification de £ sur Q est / — 1, donc ([7], § 39, .
satz 118-119; [8]) £ est [-primaire si et seulement si il existe dans K ({) un
¢lément x tel que I’on ait la congruence suivante:

(*) &= x'(mod 8.

ou =
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