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Dans le troisiéme paragraphe, nous donnons la loj de décomposition
des nombres premiers dans ces corps non galoisiens.

Enfin, dans le quatriéme paragraphe, nous établissons les propriétés
- de divisibilité des nombres de classes annoncées au début en construisant
des corps tchébychéviens dont les clotures galoisiennes sont des extensions
abéliennes non ramifiées de degré / de certains corpscycliquesdedegré / — 1.
Les paragraphes 2, 3 et 4 sont essentiellement indépendants; seuls quelques
lemmes établis au paragraphe 2 servent dans les paragraphes 3 et 4.

L’idée d’étudier les corps tchébychéviens m’a été donnde par Pierre
Barrucand; les trois premiers paragraphes de ce travail ont été élaborés
avec lui; je tiens 4 le remercier ici.

0) NoTATIONS

Nous désignons par » un nombre positif impair (dans les parties 2), 3)
et 4) ce n sera supposé premier, nous poserons alors n = [), par K le corps
quadratique Q (,/d) ol d est sans carré, par ¢ le discriminant de K et par ¢ -

et £ deux entiers conjugués (non rationnels) de K tels que &6 = M™ ou M |
est un entier rationnel. Nous choisissons une racine z-iéme de ¢ que nous

R R — 2ni 21
notons \/ & et nous posons \/ &= M/" \/5, {=exp|—),o=cos|—

n n
et L=Q (o, Vd (0*— 1)) Pour tout entier positif k£, nous posons

tk.___(n\/g)k +(n\/'g-)k, f(k) — Ckn\/%__{_ C—kn\/g_’

TH = Q (™), t = t© et T = TO. Nous désignons par N la cloture
galoisienne de 7. Enfin, si 4 est un anneau, A" est le semi-groupe des puis-

sanceses n-icmes des élémentsde A et A* est le groupe des éléments inver-
sibles de A.

1) ETUDE GENERALE

1.1. Une famille de polynémes

Pour tout entier positif &, nous désignons par T (X) le polyndme
vérifiant 7}, (e°+e™%) = ¥ + k= (C’est-a-dire, & une 1égére modification
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prés, le k-iéme polyndme de Tchébychev de lere espéce). On a T, (X)
=2, T,(X) =X et T, (X) = XTj—1 (X) — T}—, (X). ‘
Posons P, (X; M) = M"? T, (X//M). On vérifie que, pour k > 0, les
P, (X; M) sont des polyndmes unitaires de degré k a coefficients entiers, que
Py(X; M) =2, que Py (X; M) = Xet que P, (X; M) = XP,_, (X; M)
— MPy—, (X; M).

LEMME 1.1.1. Pour tout entier positif k, ona P, (t; M) = t,.

Démonstration. Soit z un nombre complexe tel que e* = "\/ &/ \/M , alors
e+ e %= t/\/]\} et donc P, (t; M) = MY2T, (t/\/M) = M* 2 (k=
+ ek = . ,

Soit #r (§) = & + ¢; le lemme précédent appliqué avec k = n montre
que P, (t, M) — tr (¢) = 0. De méme, pour toutjona P, (t9; M) — tr (&)
= 0. On voit facilement que les %) sont distincts deux & deux (car & n’est
pas rationnel), ce sont donc les » racines de P, (X; M) — tr (). De cela
on déduit le lemme suivant:

LEMME 1.1.2. & est une puissance n-iéme dans K si et seulement si
le polynéme P,(X; M) — tr ({) admet une racine rationnelle qui permet
trés simplement de savoir si £ est une puissance z-iéme dans K. Enfin on a
le critére d’irréductibilité suivant: *

PrOPOSITION 1.1.3. Le polynéme P, (X; M) — tr (§) est irréductible si
et seulement si, pour aucun diviseur premier | de n, le polynéme
P (X;M™Y — tr () n’a de racines rationnelles.

Démonstration. Notre polyndme est irréductible si et seulement si le
corps T = Q (¢) est de degré n sur Q. Mais, n étant impair, T est de degré »
sur Q si et seulement si K ("\/ £) est une extension de degré n sur K. Cela
équivaut & ce que, pour aucun diviseur premier / de n, le nombre & n’est
une puissance /-iéme dans K; on conclut a I'aide du lemme précédent.

1. 2. Les corps tchebycheviens

DEFINITION 1. 2. 1. Le corps T obtenu par le procédé précédent est
dit tchebychevien si il est de degré # sur Q. Dans ce cas on dira que T est
le corps tchebychevien associé a £ ou que & est un entier quadratique
définissant le corps tchebychevien 7.,
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Dans toute la suite, nous supposons que T est tchebychevien. Les 7
sont donc les conjugués de T’; le corps T est totalement réel si d < 0 et
simplement réel (i.e. un et un seul conjugué réel) si d > 0. De plus, pour
tout diviseur m de n, le corps Q (t,,) est un sous-corps de T qui est tcheby-
chevien de degré n/m sur Q ; en conséquence, sin = x [3 est la décompo-

J
sition canonique de 7 et si n; = n/ly, alors T est le composé des corps
tchebycheviens Q (¢ J)

Nous allons maintenant déterminer la cloture galoisienne N du corps
tchebychevien T. Pour cela nous aurons besoin d’un lemme:

LEMME 1.2.2. Le nombre t* = \/g(”\/Z—— "\/?) appartient a T.

Démonstration. On a ("\/£)? —t("\/&) + M = 0 donc K ("/¢)
=T ("\/z) — T(\/tz—4M). D’autre partK("\/—C') contient T(\/E); ces
deux corps ayant méme degré sur Q sont égaux. En conséquence, ’auto-
morphlsme non trivial de K ("\/ &)/T envoie \/ d sur —\/ d et \/ t° —4M
sur — /t? — 4M donc laisse invariant \/ d \/ t“ — 4M; cet élément est
donc dans T. On conclut en remarquant que les deux racines de I’équa-
tion X2 — tX + M = 0 sont "\/_E et ”ﬁdonc que "\/z - "\/?

= \/t* — 4M (au signe prés).

On peut maintenant démontrer la proposition suivante:
ProrosiTiON 1.2.3. La cléture galoisienne N de T est le corps

Q (¢, w, \/ d(w®-1)) c’est-d-dire le composé TL de T et L.

Démonstration. Les conjugués de ¢ étant les t ), on a N = Q (¢=¢,

2n
t O, L), Onar® + "D = 2pret ¢t — =D =4 25 gin ——
. n

_ — - t*
(" & =" &), soit 1V — =D = 13 /g4 (a)z—l)g (ot t* est défini
dans le lemme précédent). En conséquence Q (¢, w, \/ d(w? — 1)) est inclus
. 2n
~dans N. D’autre part, pour tout j on a t"¥) = 2¢cos (j —) e
n

. L &7
sin (]—n~) "

2 d

sin (— )

h

\;i sm(]—) = 2t cos (]—) + 2\/d(co —~1)
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. .2
5 sin (]—n—)
Mais cos (j —) et — sont dans Q (w) et t* est dans Q (?),
T
T s (%)
n

donc 19 est dans Q (¢, o, \/ d(w*—1) et donc N est inclus dans Q (7, ,
V/ d (w*—1)), ce qui achéve la démonstration.

Le corps L = Q (o, \/ d (w*—1)) est une extension cyclique de Q
de degré ¢ (n) (¢ est Iindicateur d’Euler) sauf si K est un sous-corps

imaginaire de Q ({) auquel cas ce degré est . Si n est premier, on

montre facilement la proposition suivante:

PROPOSITION 1.2.4. Si n est premier et si K n’est pas un sous-corps
imaginaire de Q((), alors Gal (N/Q) est isomorphe au groupe métacyclique

ab
(Cest-a-dire au groupe multiplicatif des matrices (O 1) ou a et b sont

dans le corps 4 n éléments et a # 0).

Démonstration. N est la cloture galoisienne d’un corps résoluble de
degré premier. Le groupe Gal (N/Q) est donc isomorphe a un sous-groupe
du groupe métacyclique. Mais Gal (L/Q) est un quotient d’ordre ¢(n) de
Gal (N/Q), ce dernier est donc le groupe métacyclique tout entier.

Le nombre n étant toujours supposé premier, le cas ou K est un sous-

corps imaginaire de Q({) se traite de la méme maniére. Si K # Q./ — 3 ou
sin # 3, on trouve que Gal (N/Q) est isomorphe au sous-groupe d’indice 2

_ ) , a b\ |
du groupe métacyclique formé des matrices <0 1) ol a est un carré non

nul dans le corps & n éléments. Si K = Q(y/— 3) et n = 3, alors L = Q
donc N = T est une extension cyclique d’ordre 3 de Q.

Remarque. Dans lé cas général (i.e. » non premier) on a un résultat
analogue: si K n’est pas un sous-corps imaginaire de Q({), le groupe
Gal (N/Q) est isomorphe au sous-groupe du groupe multiplicatif de I’an-
nsau M, (Z/nZ) des matrices 2% 2 sur ’anneau Z/nZ formé des matrices

. ab :
¢ type (0 1) ou a est inversible. Si K est un sous-corps imaginaire de Q({)
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différent de Q(,/—3) ol si 3 ne divise pas #, alors Gal (N/Q) est un sous-
groupe d’indice 2 du groupe précédent. |

Enfin, si £, et £, sont deux entiers de K dont les normes sont les puis-
sances n-iémes de rationnels mais qui, pour aucun diviseur premier / de n,
ne sont des puissances l-iémes dans K, on a la proposition suivante:

PROPOSITION 1.2.5. Les corps T; et T, coincident si et seulement
si &1 = ESq" ou k est un entier premier @ n et ot n est un élément de K.

Démonstration. Si 7T1 = T,, on voit facilement que K (¢, ”\/ fj
= K (¢, "\/ ¢,) et donc (théorie de Kummer) ¢; = &% " ol1 k est un entier
premier 4 n et ou ¢ est un élément de K (¢). On sait ([6] par exemple) que
cela implique une égalité &; = &% 4" avec n dans K. Réciproquement, si
&, = &5y on a ”\/El + "\/El = n"\/cfz’;_-l- ﬁ"\/zé‘. Posons = o +
B4, il vient "/&, + "JE = «("JEE + " /) + Bd (/-
" JEY). Les lemmes 1.1.1 et 1.2.2 montrent que "./&5 + " JEE et
'\/ d (”\/52-"\/ £X) sont dans T,, donc que T est inclus dans T, ; ces
corps ayant méme degré, on a 7, = T,. C.Q.F.D.

REMARQUE 1.2.6. Si n = 3, les formules de Cardan montrent que les
corps tchebycheviens coincident avec les corps cubiques non purs (un corps

pur étant un corps du type Q (3\/m—) avec m rationnel).

2) LE CALCUL DU DISCRIMINANT

Nous supposons maintenant que z est premier (impair); pour souligner
cette hypothése nous posons » = [. Nous allons calculer le discriminant A
du corps 7. Comme on pourra le constater sur la formule, ce discriminant Jl
n’est pas, en général, le discriminant du polyndme définissant 7. La for-
mule est donnée dans le premier paragraphe.

2.1. La formule

Nous supposerons dans toute cette partie que I’entier quadratique ¢
n’est divisible par la puissance /-i¢me d’aucun idéal premier de K qui divise /;
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