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CORPS RESOLUBLES
ET DIVISIBILITE DE NOMBRES DE CLASSES D’IDEAUX

par Ph. SATGE

Plusieurs auteurs.se sont attachés a construire des corps quadratiques
dont le nombre de classes est divisible par 3 (par exemple [1], [2], [3], [4], [5])-
Cependant, c’est seulement en 1968 que Taira Honda [3] a démontré exis-
tence d’une infinité de corps quadratiques réels dont le nombre de classes
est divisible par 3. Nous complétons ici ce résultat de Honda en donnant
une caractérisation de tous les corps quadratiques dont le nombre de classes
est divisible par 3 (Th. 4.2.2). En fait, cette caractérisation apparait ici
comme cas particulier d’un critére plus général qui affirme la divisibilité
par un nombre premier impair / du nombre des classes de certains corps
cycliques de degré [ — 1 (Th. 4.3.1). — Ce critére permet de montrer
I’existence d’une infinité de corps imaginaires et d’une infinité de corps
réels, cycliques de degré / — 1, dont le nombre de classes est divisible
par /. Pour cela, nous sommes amenés & étudier les corps obtenus en
adjoignant au corps Q des rationnels la somme des racines /-iémes de
deux éléments conjugués d’un corps quadratique. Sous certaines conditions,
nous obtenons ainsi des corps, généralement non galoisiens, que nous
appelons « Tchebycheviens » (en raison du lien qui unit le polyndme mini-
mal de leurs générateurs et les polynomes classiques de Tchebychev). Ces
corps sont une généralisation naturelle des corps cubiques: en effet, les
formules de Cardan montrent que tout corps cubique est obtenu en adjoi-
gnant 3 Q la somme des racines cubiques de deux éléments conjugués
d’un corps quadratique. Les corps ainsi obtenus possedent certaines pro-
priétés remarquables que nous développons pour elles-mémes dans les
trois premiers paragraphes de ce travail.

Dans le premier paragraphe, nous définissons et étudions les propriétés
générales de ces corps (dans cette partie il n’est pas nécessaire de sup-
poser [ premier et nous remplag:oris [/ par un entier » impair quelconque).

Dans le second paragraphe, nous calculons leurs discriminants par la
méthode des représentations d’Artin.
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Dans le troisiéme paragraphe, nous donnons la loj de décomposition
des nombres premiers dans ces corps non galoisiens.

Enfin, dans le quatriéme paragraphe, nous établissons les propriétés
- de divisibilité des nombres de classes annoncées au début en construisant
des corps tchébychéviens dont les clotures galoisiennes sont des extensions
abéliennes non ramifiées de degré / de certains corpscycliquesdedegré / — 1.
Les paragraphes 2, 3 et 4 sont essentiellement indépendants; seuls quelques
lemmes établis au paragraphe 2 servent dans les paragraphes 3 et 4.

L’idée d’étudier les corps tchébychéviens m’a été donnde par Pierre
Barrucand; les trois premiers paragraphes de ce travail ont été élaborés
avec lui; je tiens 4 le remercier ici.

0) NoTATIONS

Nous désignons par » un nombre positif impair (dans les parties 2), 3)
et 4) ce n sera supposé premier, nous poserons alors n = [), par K le corps
quadratique Q (,/d) ol d est sans carré, par ¢ le discriminant de K et par ¢ -

et £ deux entiers conjugués (non rationnels) de K tels que &6 = M™ ou M |
est un entier rationnel. Nous choisissons une racine z-iéme de ¢ que nous

R R — 2ni 21
notons \/ & et nous posons \/ &= M/" \/5, {=exp|—),o=cos|—

n n
et L=Q (o, Vd (0*— 1)) Pour tout entier positif k£, nous posons

tk.___(n\/g)k +(n\/'g-)k, f(k) — Ckn\/%__{_ C—kn\/g_’

TH = Q (™), t = t© et T = TO. Nous désignons par N la cloture
galoisienne de 7. Enfin, si 4 est un anneau, A" est le semi-groupe des puis-

sanceses n-icmes des élémentsde A et A* est le groupe des éléments inver-
sibles de A.

1) ETUDE GENERALE

1.1. Une famille de polynémes

Pour tout entier positif &, nous désignons par T (X) le polyndme
vérifiant 7}, (e°+e™%) = ¥ + k= (C’est-a-dire, & une 1égére modification
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prés, le k-iéme polyndme de Tchébychev de lere espéce). On a T, (X)
=2, T,(X) =X et T, (X) = XTj—1 (X) — T}—, (X). ‘
Posons P, (X; M) = M"? T, (X//M). On vérifie que, pour k > 0, les
P, (X; M) sont des polyndmes unitaires de degré k a coefficients entiers, que
Py(X; M) =2, que Py (X; M) = Xet que P, (X; M) = XP,_, (X; M)
— MPy—, (X; M).

LEMME 1.1.1. Pour tout entier positif k, ona P, (t; M) = t,.

Démonstration. Soit z un nombre complexe tel que e* = "\/ &/ \/M , alors
e+ e %= t/\/]\} et donc P, (t; M) = MY2T, (t/\/M) = M* 2 (k=
+ ek = . ,

Soit #r (§) = & + ¢; le lemme précédent appliqué avec k = n montre
que P, (t, M) — tr (¢) = 0. De méme, pour toutjona P, (t9; M) — tr (&)
= 0. On voit facilement que les %) sont distincts deux & deux (car & n’est
pas rationnel), ce sont donc les » racines de P, (X; M) — tr (). De cela
on déduit le lemme suivant:

LEMME 1.1.2. & est une puissance n-iéme dans K si et seulement si
le polynéme P,(X; M) — tr ({) admet une racine rationnelle qui permet
trés simplement de savoir si £ est une puissance z-iéme dans K. Enfin on a
le critére d’irréductibilité suivant: *

PrOPOSITION 1.1.3. Le polynéme P, (X; M) — tr (§) est irréductible si
et seulement si, pour aucun diviseur premier | de n, le polynéme
P (X;M™Y — tr () n’a de racines rationnelles.

Démonstration. Notre polyndme est irréductible si et seulement si le
corps T = Q (¢) est de degré n sur Q. Mais, n étant impair, T est de degré »
sur Q si et seulement si K ("\/ £) est une extension de degré n sur K. Cela
équivaut & ce que, pour aucun diviseur premier / de n, le nombre & n’est
une puissance /-iéme dans K; on conclut a I'aide du lemme précédent.

1. 2. Les corps tchebycheviens

DEFINITION 1. 2. 1. Le corps T obtenu par le procédé précédent est
dit tchebychevien si il est de degré # sur Q. Dans ce cas on dira que T est
le corps tchebychevien associé a £ ou que & est un entier quadratique
définissant le corps tchebychevien 7.,
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Dans toute la suite, nous supposons que T est tchebychevien. Les 7
sont donc les conjugués de T’; le corps T est totalement réel si d < 0 et
simplement réel (i.e. un et un seul conjugué réel) si d > 0. De plus, pour
tout diviseur m de n, le corps Q (t,,) est un sous-corps de T qui est tcheby-
chevien de degré n/m sur Q ; en conséquence, sin = x [3 est la décompo-

J
sition canonique de 7 et si n; = n/ly, alors T est le composé des corps
tchebycheviens Q (¢ J)

Nous allons maintenant déterminer la cloture galoisienne N du corps
tchebychevien T. Pour cela nous aurons besoin d’un lemme:

LEMME 1.2.2. Le nombre t* = \/g(”\/Z—— "\/?) appartient a T.

Démonstration. On a ("\/£)? —t("\/&) + M = 0 donc K ("/¢)
=T ("\/z) — T(\/tz—4M). D’autre partK("\/—C') contient T(\/E); ces
deux corps ayant méme degré sur Q sont égaux. En conséquence, ’auto-
morphlsme non trivial de K ("\/ &)/T envoie \/ d sur —\/ d et \/ t° —4M
sur — /t? — 4M donc laisse invariant \/ d \/ t“ — 4M; cet élément est
donc dans T. On conclut en remarquant que les deux racines de I’équa-
tion X2 — tX + M = 0 sont "\/_E et ”ﬁdonc que "\/z - "\/?

= \/t* — 4M (au signe prés).

On peut maintenant démontrer la proposition suivante:
ProrosiTiON 1.2.3. La cléture galoisienne N de T est le corps

Q (¢, w, \/ d(w®-1)) c’est-d-dire le composé TL de T et L.

Démonstration. Les conjugués de ¢ étant les t ), on a N = Q (¢=¢,

2n
t O, L), Onar® + "D = 2pret ¢t — =D =4 25 gin ——
. n

_ — - t*
(" & =" &), soit 1V — =D = 13 /g4 (a)z—l)g (ot t* est défini
dans le lemme précédent). En conséquence Q (¢, w, \/ d(w? — 1)) est inclus
. 2n
~dans N. D’autre part, pour tout j on a t"¥) = 2¢cos (j —) e
n

. L &7
sin (]—n~) "

2 d

sin (— )

h

\;i sm(]—) = 2t cos (]—) + 2\/d(co —~1)
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. .2
5 sin (]—n—)
Mais cos (j —) et — sont dans Q (w) et t* est dans Q (?),
T
T s (%)
n

donc 19 est dans Q (¢, o, \/ d(w*—1) et donc N est inclus dans Q (7, ,
V/ d (w*—1)), ce qui achéve la démonstration.

Le corps L = Q (o, \/ d (w*—1)) est une extension cyclique de Q
de degré ¢ (n) (¢ est Iindicateur d’Euler) sauf si K est un sous-corps

imaginaire de Q ({) auquel cas ce degré est . Si n est premier, on

montre facilement la proposition suivante:

PROPOSITION 1.2.4. Si n est premier et si K n’est pas un sous-corps
imaginaire de Q((), alors Gal (N/Q) est isomorphe au groupe métacyclique

ab
(Cest-a-dire au groupe multiplicatif des matrices (O 1) ou a et b sont

dans le corps 4 n éléments et a # 0).

Démonstration. N est la cloture galoisienne d’un corps résoluble de
degré premier. Le groupe Gal (N/Q) est donc isomorphe a un sous-groupe
du groupe métacyclique. Mais Gal (L/Q) est un quotient d’ordre ¢(n) de
Gal (N/Q), ce dernier est donc le groupe métacyclique tout entier.

Le nombre n étant toujours supposé premier, le cas ou K est un sous-

corps imaginaire de Q({) se traite de la méme maniére. Si K # Q./ — 3 ou
sin # 3, on trouve que Gal (N/Q) est isomorphe au sous-groupe d’indice 2

_ ) , a b\ |
du groupe métacyclique formé des matrices <0 1) ol a est un carré non

nul dans le corps & n éléments. Si K = Q(y/— 3) et n = 3, alors L = Q
donc N = T est une extension cyclique d’ordre 3 de Q.

Remarque. Dans lé cas général (i.e. » non premier) on a un résultat
analogue: si K n’est pas un sous-corps imaginaire de Q({), le groupe
Gal (N/Q) est isomorphe au sous-groupe du groupe multiplicatif de I’an-
nsau M, (Z/nZ) des matrices 2% 2 sur ’anneau Z/nZ formé des matrices

. ab :
¢ type (0 1) ou a est inversible. Si K est un sous-corps imaginaire de Q({)
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différent de Q(,/—3) ol si 3 ne divise pas #, alors Gal (N/Q) est un sous-
groupe d’indice 2 du groupe précédent. |

Enfin, si £, et £, sont deux entiers de K dont les normes sont les puis-
sances n-iémes de rationnels mais qui, pour aucun diviseur premier / de n,
ne sont des puissances l-iémes dans K, on a la proposition suivante:

PROPOSITION 1.2.5. Les corps T; et T, coincident si et seulement
si &1 = ESq" ou k est un entier premier @ n et ot n est un élément de K.

Démonstration. Si 7T1 = T,, on voit facilement que K (¢, ”\/ fj
= K (¢, "\/ ¢,) et donc (théorie de Kummer) ¢; = &% " ol1 k est un entier
premier 4 n et ou ¢ est un élément de K (¢). On sait ([6] par exemple) que
cela implique une égalité &; = &% 4" avec n dans K. Réciproquement, si
&, = &5y on a ”\/El + "\/El = n"\/cfz’;_-l- ﬁ"\/zé‘. Posons = o +
B4, il vient "/&, + "JE = «("JEE + " /) + Bd (/-
" JEY). Les lemmes 1.1.1 et 1.2.2 montrent que "./&5 + " JEE et
'\/ d (”\/52-"\/ £X) sont dans T,, donc que T est inclus dans T, ; ces
corps ayant méme degré, on a 7, = T,. C.Q.F.D.

REMARQUE 1.2.6. Si n = 3, les formules de Cardan montrent que les
corps tchebycheviens coincident avec les corps cubiques non purs (un corps

pur étant un corps du type Q (3\/m—) avec m rationnel).

2) LE CALCUL DU DISCRIMINANT

Nous supposons maintenant que z est premier (impair); pour souligner
cette hypothése nous posons » = [. Nous allons calculer le discriminant A
du corps 7. Comme on pourra le constater sur la formule, ce discriminant Jl
n’est pas, en général, le discriminant du polyndme définissant 7. La for-
mule est donnée dans le premier paragraphe.

2.1. La formule

Nous supposerons dans toute cette partie que I’entier quadratique ¢
n’est divisible par la puissance /-i¢me d’aucun idéal premier de K qui divise /;
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tous les corps tchebycheviens sont obtenus a 1’aide de tels entiers (en effet,
Pidéal principal engendré par & s’écrit a'b ol a et b sont des idéaux entiers
et ol b n’est divisible par la puissance /-iéme d’aucun idéal premier; choi-
sissons dans la classe de @ un idéal ¢ premier & [ et désignons par « un
générateur de @~ c; le nombre o' est un entier de K qui n’est divisible par
la puissance l-iéme d’aucun idéal premier contenant / et le corps tcheby-
chevien défini par cet entier est celui défini par £). Pour énoncer la formule
du discriminant, nous aurons besoin de quelques préliminaires. Pour tout

entier i, on définit les entiers rationnels a@; et b; par I'égalité & = 3

(ai-l—bi\/ ;ZI on a alors le lemme suivant:

LemMe 2.1.1. On suppose que [ ne divise pas la norme de &, alors
I) il existe un entier © premier @ 1 tel que 1 divise le produit b.d (et

on peut toujours trouver un tel t divisant | — (7 )

II) si, pour un entier t premier & I, le produit b.d est divisible par 1?,
alors pour tout entier i premier & I, le produit b,d est divisible par 1% dés
qu’il est divisible par 1.

Démonstration
o e 4d
I) Si [ divise d, c’est clair. Si (?) = 1, alors &1 est congru a1
L d .
modulo / ie. &1 =141 %/_ avec o et [3 entiers rationnels.

On a donc b,_; = [P c’est-a-dire que [/ divise b;_;. De méme si (7)

= — 1, alors £'*! est congru A un entier rationnel modulo / et le méme
raisonnement montre que / divise b; 4 ;.

IT) Soit © un entier premier a [ tel que / divise b.d. 1l est facile de voir
que /* divise b,d si et seulement si £° est congru & un entier rationnel modulo
le carré d’un idéal premier de K au-dessus de /. On conclut en remarquant
qu’alors, pour tout entier i premier & / tel que &% est congru a un rationnel
modulo /, cet entier quadratique & est congru & un rationnel modulo /2.
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On définit j de la maniére suivante: on pose j = 1si / ne divise pas la |
norme de ¢ et si, pour les entiers i premiers a /, le produit b,d est divisible

par /2 dés qu’il est divisible par / et on pose j = 0 sinon. De plus si ¢ est
le plus grand entier naturel divisant & et si ¢ = ¢, ¢, ol ¢, est sans puis-

| I -1
sance /-i€éme, on pose g = [] p . Enfin on pose A = >
P|IC1
d
-) =1
)
I +1

suivant que / est congru & 1 ou & 3 modulo 4 et on désigne par

(/,d) le p.g.c.d de [ et de d. Le discriminant A de T est alors donné par

la formule suivante:
B ll—2j l 5 l(l—-l)/z gl—l

(2.1.2) 4] = L

(On rappelle que-o est le discriminant du corps K = Q (4 /d)).

2.2. Démonstration de la formule

Rappelons qu'un élément ¢ de K est dit / primaire si il est étranger

a [ et si I'extension de Kummer K (¢, '\/&)/K ({) est non ramifiée au-
dessus de /. On a alors la proposition suivante:

PROPOSITION 2.2.1. L’entier j étant celui défini au paragraphe précédent,
ona j=1 ou O suivant que & est ou n’est pas I-primaire. -

Démonstration. Pour plus de concision, nous supposerons dans cette
démonstration que le corps K n’est pas inclus dans Q ({); le cas ou K est
inclus dans Q ({) se traite de fagon analogue. Nous désignons par £ un idéal
premier de K ({) au dessus de / et par [ l'intersection de € et de K. On
vérifie que I'indice de ramification de £ sur Q est / — 1, donc ([7], § 39, .
satz 118-119; [8]) £ est [-primaire si et seulement si il existe dans K ({) un
¢lément x tel que I’on ait la congruence suivante:

(*) &= x'(mod 8.

ou =




QIR | U
Montrons que (¥) est équivalente a la congruence suivante:

(**) E= yl» (mOd IZ)_ avec y dans K

Si @ est le seul idéal premier de K (0) au dessus de 1, alors en prenant
les normes dans I’extension K ({)/K, la congruence (*) implique Ny x (£)
= (Nxyx ) (mod ) d’onr &1 = z' (mod I?) avec z dans K ce qui
implique (**). Sinon, soit K; le corps de décomposition de I dans K O/K

et [, intersection de € et de K,. L’idéal & étant le seul idéal de K ({) au

dessus de 1; et le degré de K (0)/K, étant un raisonnement a1\1a10gue

a celui que I’on vient de faire montre que (*) implique I’existence d’un z,

~ -1

dans K, vérifiant la congruence ¢ 7= z} (mod 1%); Iidéal I étant totale-

ment décomposé dans K/K; cela implique I’existence d’un z dans K tel
-1 .

que & e (mod 1?) ce qui entraine (**). Réciproquement, si [ est
totalement ramifié dans K ({)/K, alors (**) implique ¢ = y* (mod 220~ 1)
ce qui donne (*). Sinon, / est ramifié dans K; désignons alors par 4 ’anneau
des entiers K. Le noyau de la surjection canonique de (4/1%)* sur (4/1%)*
est le sous groupe de (4/1%)* formé des classesdes 1 + klouk = 0, ...,1 — 1.
La congruence (**) implique donc I’existence d’un entier £ compris entre 0
et ] — 1 tel que & = (1+k!) y' (mod 13). En prenant la norme sur Q, il
vient M' = (1+kl)? (Ng,o () (mod /%) et donc 1 + klest une puissance
liéme modulo /2 i.e. modulo I'idéal I*. On a donc ¢ = x' (mod %) d’ou
¢ = x' (mod 3¢~ 1/2) ce qui implique (*) et achéve la démonstration de
'équivalence de (*) et (**).

Soit maintenant i un entier tel que / divise bd. On a N ko &)= M*"
== %(az,-2 +b?d). D’autre part b?d/4 est dans I'idéal [? (en effet, si / ne divise
pas d, alors [ divise b; donc /? divise b? et, si I divise d, alors / est dans 1?).
Le rationnel a;/4 est donc une I-unité qui est une puissance Il-iéme
modulo 12; il en est donc de méme de 2/a;. En conséquence &¥ est une

puissance -iéme modulo I? si et seulement si (2/a,) ' = 1 + b, a7t \/E
en est une. Si /% ne divise pas b,d, alors 1 + b, a7’ \/ d est congru a
I modulo I mais pas modulo 1> donc n’est pas une puissance l-idme
modulo 2. Si /% divise bd et si I ne divise pas d alors 1 + b, a;? \/ d est
congru & 1 modulo 12 donc est une puissance /-iéme modulo /2. Si /2 divise

bid et si I divise d, alors 1 + b, a;" \/d est congru & 1 modulo 1® donc est
uie puissance /-iéme modulo 12 ce qui achéve la démonstration.
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Venons-en maintenant 3 la démonstration de la formule 2.1.2. Pour
alléger la rédaction, nous supposerons encore que K n’est pas inclus dans
Q (0); le cas ou K est inclus dans Q (0) se traite de maniére analogue. Cette
démonstration repose essentiellement sur les méthodes décrites dans [8],
nous adopterons donc pour I’essentiel les notations et la terminologie de
cet ouvrage;

On sait ([8], chap. IV, prop. 6, cor. 1) que le discriminant A de T est Ie
conducteur d’Artin de la représentation de Gal (N/Q) induite par la repré-
sentation triviale de Gal (N/T). Pour calculer ce conducteur désignons par
Gdr=1, ..., 1-1 les I — 1 représentations non triviales de degré 1 de
Gal (N/L), par 1y, et 1 n/r les représentations triviales de Gal (N/Q) et
de Gal (N/T) et, pour toute représentation e d’un sous-groupe de Gal (N/Q)

par p* la représentation induite par e sur Gal (N/Q). On a alors Iégalité |} |
-1

(—-n1 ;}/T = (=1 1y + ) yx comme on le vérifie en calculant Il
k=1

caractere de chacun des deux membres. De cette égalité on tire, en prenant

les conducteurs d’Artin, I’égalité
1 -1

(2.2.2) AT =TT f ()
k=1
ol f () est le conducteur d’Artin de y ;.
Le conducteur d’Artin de y; est le produit du discriminant d; du
corps L par la norme sur Q du conducteur d’Artin de y,. Ce dernier étant
le conducteur de I’extension abélienne N/L, la formule 2.2.2 donne

(2.2.3) | 4 = dy Np,o ()

ou { est le conducteur de ’extension abélienne N/L.
Le calcul de d}, ne pose pas de difficulté, on trouve:

5 1a-1D/2 .
I}-2 r i | = 1mod 4
(0, d). v
(2.2.4) d, = 1 -2 5 7 a-12
S1 | = 3mod 4
| (L) LG a)

Le calcul de A est donc ramené a celui du conducteur § de I’extension
N/L. Cette extension étant cyclique de degré / et le corps N étant galoisien
sur Q, I'idéal { est de la forme

(2.2.5) f=((18x (ITp)
e
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oll x est un entier naturel, ou & décrit les idéaux premiers de L qui
contiennent / et o p décrit les idéaux premiers de L étrangers a / et ramifics
dans N. Avec les notations introduites dans 2.1, on a la proposition suivante:

PROPOSITION 2.2.6. Soit p un nombre premier différent de 1. Les idéaux
premiers de L contenant p se ramifient dans N si et seulement si p divise

d |
¢, et (1—)) = 1 (on convient que (5) = 1 si et seulement si 2 est décom-

posé dans K).

Démonstration. Soit p’ un idéal premier de K ({) au dessus de p. Posons
P=p nKetp =p' n L. Le comportement de p dans N/L est identique

a celui de p’ dans N ({)/K ({). Mais N ({) = K (¢, ’\/é) donc p’ se ramifie
dans N (0)/K () si et seulement si son exposant dans I'idéal de X ({) engendré
par & est premier a /. Le degré de K ({)/K étant premier a /, ceci est équivalent
a ce que I’exposant de p dans I'idéal de K engendré par £ est lui méme
premier a /. La norme de £ étant une puissance /-iéme, cela implique que p

d
se décompose dans K i.e. que (—) = +1. Dans ce cas, en rempla-
p

cant éventuellement § par son conjugué, I'idéal de K engendré par & est
de la forme (p)™ p™ a ou (p) est Iidéal principal de K engendré par p,
ol x,; et x, sont deux entiers naturels et ou a est un idéal de K étranger
a p. Il résulte de la définition de c; que p divise ¢, si et seulement si /
ne divise pas x;. Mais 2x; + x, est I’exposant de p dans la norme de &
donc est divisible par /. En conséquence x; + x, qui est ’exposant de p
dans I’idéal engendré de K engendré par & est divisible par / si et seulement
si / divise x, et donc si et seulement si p ne divise pas ¢; ce qui achéve la
démonstration.

Il reste a calculer le x de la formule 2.2.5. Pour cela, on choisit un idéal
premier " de K({) au dessus de [etonpose [ = ' nKet & = &' n L.
On désigne respectivement par s et s’ les plus grands entiers tels que les
groupes de ramifications d’indice inférieur s et s" de & et &' dans N/L et
N (D)/K ({) sont non triviaux (s et s’ sont donc des entiers relatifs supérieurs
ou égaux a —1). L’extension N/L étant cyclique de degré I, on sait que
x = s+ 1. On sait aussi que s = —1 est équivalent 4 la non ramification
de L dans N/Ldoncas' = —1.Sis # —1, les valeurs de s et s’ sont lies
par le lemme suivant:
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LEMME 2.2.7. On suppose s' # —1. On a alors s = s'12 ou s =g

suivant que £ est ou n’est pas ramifié dans K ({)/L.
A A A | ' A

Démonstration. On désigne respectivement par L, N, K ({) et N (0) les
complétés de L, N, K ({) et N ({) au dessus de /. Le degré de K (O/L étant
premier a /, les groupes de ramifications d’indice strictement positif de £
dans NJ/L sont identiques & ceux de ce méme £ dans N (/L et a ceux de
L’ dans N ({)/K (). Posons G = Gal (N(C)/L) et H = Gal (N(C)/N).
Alors toujours avec les notations de [8], chap. IV), v défini par
V= on /N estle plus grand réel tel que G* est non trivial. Mais G
est cyclique d’ordre / et H est d’ordre 2, donc v est le plus grand réel tel
que G° H/H est non trivial. D’autre part G° H/H = (G/H)" et G/H

A A
= Gal (N/L) donc {3} (v) est le plus grand réel tel que Gal (N/L) “pﬁ/’i -
est non trivial ce qui signifie que s = 32 (). Enfin ¢ . ()
= JFn o N/t 8) = ¢ RN (s"); onachéve la démonstration en remar-
quant que {5 /5 est la multiplication par 1/2 ol Iidentité suivant que £
est ou n’est pas ramifié dans K ({)/L.
In ne nous reste donc plus qu’a calculer s'; c’est Pobjet de la proposition

suivante:

ProposITION 2.2.8. Si [ divise ¢; ona s = I Sinon, si j =1 ona
I +1

’

s = —=1; si j=0 ona s =

ou 1 suivant que | divise ou

ne divise pas d.

Démonstration. Si [ divise ¢, alors [ divise . Par hypothése [ ne divise
pas &, donc I’exposant de [ dans I’idéal principal engendré par ¢ est premier
a l. Le degré de K ({)/K étant premier a /, il en est de méme de I’exposant
de £’ dans I'idéal de K ({) engendré par ¢ et donc ([7D) on a s’ = [,

Si I ne divise pas c;, il résulte des hypothéses faites sur ¢ que [ ne divise
pas ¢. Si j =1, alors & est [-primaire donc £’ est non ramifiée dans
N (/K () doncs’ = —1.8ij = 0, on désigne par Y le plus grand entier
tel que ¢ est, dans K (), une puissance /-iéme modulo £'Y. On sajt ()
que Y << /etques’ = [ — Y. 1l ne reste donc plus qu’a calculer Y. On a vu
dans la démonstration de la proposition 2.2.1 que j = 0 est équivalent &
ce que ¢ est, dans K, congru i une puissance /-iéme modulo I mais pas

et

modulo /. Si / divise d, Iindice de ramification de K (O)/K est - 5
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donc £ est, dans K (¢), congru A une puissance l-iéme modulo £'¢~1/2

mais pas modulo 1*0¢"D/2; on a donc s =1— (I-1)2 = (I+1)/2.
Si I ne divise pas d, I'indice de ramification de K ({)/K est [ — 1 et donc ¢
est, dans K (), congru A une puissance l-iéme modulo £'~' mais pas
modulo 2% onadoncs’ =1— (I—-1) = 1, C.Q.F.D.

En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) DECOMPOSITION DES NOMBRES PREMIERS DANS T

On désigne toujours par T un corps tchébychévien de degré premier /,
par & un entier quadratique définissant 7 et assujetti & la condition imposée
au début de la partie 2 de ce travail, par N la cloture galoisienne de T et
par L le sous-corps d’indice / de N. De plus, si p est un nombre premier,
on note (p);, et (p)r les idéaux principaux de L et T engendrés par p. Enfin,
pour alléger la rédaction, on suppose dans toute cette partie que le degré
de N/QestI(I—1).

On a la proposition suivante:

PROPOSITION 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p; on note p; l’intersection de p et de L.

a) Si pp estinerte dans N|L, alors p est inerte dans T (c’est-d-dire
(p)r est un idéal premier de T).

b) Si p; est ramifié dans N|L, alors p est totalement ramifié dans T
(i.e. l'idéal (p)r est la puissance I-iéme d’un idéal premier de T).

c) Si pg est décomposé dans N|L et si (p);, = (ql...qép)e" OU (y, «ee g,
sont des idéaux premiers de L distincts deux a deux et de degré résiduel
fooona (p)r = P (P ... ‘ng)ep ouP, P, ..., EBgP sont des idéaux premiers

de T distincts deux a deux, le degré résiduel de P étant 1 et les degrés
résiduels des B, étant f,.

Démonstration.

a) L’hypothése implique que le degré résiduel de p dans N/Q est divisible
par L. Posons p; = p N T. Ce degré résiduel est le produit du degré résiduel
de py dans 7/Q par le degré résiduel de p dans N/T. L’extension N/T étant
galoisienne, ce dernier doit diviser le degré de I’extension N/T’; il est donc
premier a L. En conséquence / divise le degré résiduel de p; dans 7/Q.
Le degré de T/Q étant /, on a le résultat cherché.
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b) Méme démonstration qu’au a) en remplacant « degré résiduel »
par « indice de ramification ».

¢) Notons ¢4, 0,,...,0; les / automorphismes de I’extension N/L en
convenant que oy est Iidentité. Pour i = 1, ...,/ on pose p; = o;(p)
(donc p; = p); par hypothése les p; sont dlstlncts deux a deux.

On désigne par G_, (p,) le groupe de décomposition de p;; 'ordre de
~1 (p)) este, £, qui est premier & /, donc le corps des invariants de G_, (p,)
contient au moins un conjugué de T quitte & remplacer T par un de ses
conjugués, on peut donc supposer que T est inclus dans G_{(p,). On pose

PiT pl NT et TH = (T) De plus on note N le complété de N
en p, et T(‘) ladherence de T( " dans N Avec nos choix des indices, on

aTW = Tet T est le corps Q, des nombres p- adiques, ce qui signifie que
P1, r est non ramifié et de degré résiduel 1 dans 7/Q. D’autre part,sii > 1,

A A A A A J
le composé T'. TV est N, donc le composé T. T est Net donc 7P = N B

Cela signifie que le degré résiduel et I'indice de ramification de p; dans
N/Q, qui sont respectivement égaux a e, et f,, sont égaux i ceux de
py 0 T dans T9/Q. Mais (toujours par le choix de nos indices) ceux-ci
sont égaux a ceux de p; " T = p,,, dans 7/Q. Enfin, I'extension N/T
¢tant galoisienne, si p,r = Pi,r alors il existe un ¢ dans Gal (N/T) tel
que T (pr) = p;. Mais p, "L =p,nL = pr, donc la restriction de ¢
a L est dans le groupe de décomposition de pr dans L/Q. Ce groupe est

I -1
d’ordre e, f, = ——, donc 7 est dans le sous-groupe de Gal (N/T') d’ordre

I -1 o | . .

. En conséquence, parmi les / — 1idéaux Pa,1> - Ppr il y en a au
moll"ns g, distincts. On a donc trouvé, dans T, au dessus de p, un idéal
premier non ramifié de degré résiduel 1 dans 7/Q et une collection d’au
moins g, idéaux premiers d’indice de ramification e, et de degré résiduel Jp
dans 7/Q. Comme [T:Q] =1=1 + dp e, fp cette collection d’idéaux
premiers est constituée d’exactement g, €léments et on a trouvé tous les
idéaux premiers de 7" au dessus de p; celd achéve la démonstration.

On rappelle (voir 2.1) que j = 1 ou 0 suivant que & est ou n’est pas
[-primaire et que si ¢ est le plus grand entier rationnel divisant £, on a
posé ¢ = ¢, c; avec c; sans puissance liéme et g = [] p. En plus,

P|C1
d

()=
p
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pour tout nombre premier p, on pose (p)L = (ay... qu) ¥ ou les q; sont des
idéaux premiers de L distincts deux & deux de degré résiduel f, dans

L/Q. Lextension L/Q étant cyclique, le calcul de e,, f, et g, est simple.
Avec ces notations, on a:

TutorEMe 3.2. La décomposition d’un nombre premier p dans 7' est
donnée par les régles suivantes:

1) Sip=1letsij=0ona() =1 ol lest un idéal premier de T.
Sij=1ona (D =114, ... lg)? ou I, I ..., Ig; sont des idéaux premiers
de L distincts deux a deux, le degré résiduel de [ étant 1 et les degrés rési-

1 _
duels des [, étant f;, sauf si / = 3, d = 6 (mod 9) et si & = 3 (a+b\/d)

avec b non divisible par 9 auquel cas 3 est inerte dans 7" (i.e. (3)r est premier).

2) Si p divise g, alors (p)r = P! ot P est un idéal premier de T (si [

d
divise g et (—l) = 1, alors j = 0 et on retrouve un cas de 1)).

3) Si p # [ et si p ne divise pas g, alors en supposant { premier a p
(ce & quoi on peut toujours se ramener quitte a changer le ¢ définissant T),
on a deux cas

a) Si ¢ est, modulo un idéal premier de K au-dessus de p, une puis-

sance l-iéme, alors (p);r = B (P, ... SJ3gp)eP ol P, Py, ..., Pg, sont des
idéaux premiers de T distincts deux a deux, le degré résiduel de B étant 1

et les degrés résiduels des P; étant f,.

b) Si & n’est pas, modulo un idéal premier de K au-dessus de p, une
puissance /-iéme, alors p est inerte dans 7T (i.e (p)r est un idéal premier).

De plus, si p 5% (—) mod /, on est toujours dans le cas a). Sinon,
p

pour tout entier k, posons & = 3 (a,+ b, \/ 67)—, on est dans les cas a)

“ . " . . 1 d
ou b) suivant qu’il existe ou qu’il n’existe pas de k divisant : (r—(-))

p
tel que p divise b,.

Démonstration. Nous aurons besoin du lemme suivant:
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LeEMME 3.3. Soit p un nombre premier ; si les idéaux premiers de L
qui contiennent p sont inertes dans N/L, alors p est totalement décomposé
dans L.

Démonstration du lemme. Soit p un idéal premier de N contenant p
et p, I'intersection de p et de L. Supposons p;, inerte dans N/L et désignons
par G_, et G, les groupes de décomposition et d’inertie de p dans N/Q,

A

par N_, et N, les corps des invariants de G_; etde Gy, par Nle complete '
de N en p et par N_l, N0 etL les adhérences de N_,;, N, et L dans N

A

Le corps N 1 est le corps Q, des nombres p-adiques. L’extension NO/N 1
est cyclique non ramifiée et son degré est égal au degré résiduel de p dans
‘ A

N/Q donc est divisible par /. Enfin, I’extension L/Q, est cyclique et son
indice de ramification est e,. Ce e, est aussi I'indice de ramification de p |

A A

dans N/Q; le composé L. N, est donc une extension abélienne de Q,
dont I'indice de ramification et le degré résiduel sont égaux a I'indice de

A

ramification et au degré résiduel de p dans N/Q. En conséquence N est

AN

le composé LN, donc est abélien sur Q,, et donc G_; est un groupe abélien.
Mais, p,, étant inerte dans N/L, 'ordre de G_; est divisible par /. Le seul
sous-groupe abélien de Gal (N/Q) dont l’ordre divise / est Gal (N/L),
donc G_; est Gal (N/L) ce qui implique que p est totalement décomposé
dans L, C.Q.F.D.

Revenons a la démonstration du théoréme:

1) Soit £ un idéal premier de N au-dessus de / et £, I'intersection de £ ,
et L. Sij = 0, alors £, est ramifié dans N/L et on conclut avec la proposi-
tion 3.1. Si j = 1, £; est non ramifié dans N/L, donc est décomposé ou
inerte. Si £, est inerte, alors, d’apres le lemme 3.3, / est totalement décom-
posé dans L. Le corps L étant une extension quadratique du sous-corps réel.
maximal du corps des racines /-i¢émes de I’'unité, on a nécessairement / = 3.

Le corps L est alors Q(y/ —3d) donc il faut d = 6 (mod 9) pour que 3 soit
totalement décomposé dans L, ce qui démontre la premiére partie de notre
assertion. Enfin, ¢ étant 3-primaire, la proposition 2.2.1 montre que 3
divise b. On tire alors de [8], par des arguments analogues a ceux employés
dans la démonstration de la proposition 2.2.1, que dans N/L, I'idéal &,
est inerte si / ne divise pas b et décomposé si / divise b. Notre résultat est
donc conséquence de la proposition 3.1.
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2) Si p # 1, la proposition 2.2.6 montre que les idéaux premiers de L
au-dessus de p sont ramifiés dans N/L. Si p = [, alors j = O et onale
méme résultat. On conclut alors a I'aide de la proposition 3.1.

3) La proposition 2.2.6 montre que les idéaux premiers de L au-dessus
de p sont non ramifiés dans N/L; en conséquence, ils sont inertes ou décom-
posés. Ils sont décomposes si et seulement si les idéaux premiers de Q()

au-dessus de p sont décomposés dans K (¢, LJE i.e si et seulement si &
est une puissance -iéme dans les complétes de K (¥) en les idéaux premiers
qui divisent p. On sait (par exemple [4]) qu’il en est ainsi si et seulement
si & est une puissance -iéme dans les complétés de K en les idéaux premiers
qui divisent p. D’aprés le lemme de Hensel, il en est ainsi si et seulement si ¢
est une puissance l-iéme modulo les idéaux premiers de K qui divisent p.

Comme de plus &€ est une puissance /-ieme, il en est ainsi si et seulement si &
est une puissance -iéme modulo un des idéaux premiers de K qui divisent p;

nos assertions a) et b) résultent donc de la proposition 3.1.

d
De plus, on vérifie facilement que si p # (=) mod /, alors p n’est
p

pas totalement décomposé dans L; on déduit donc du lemme 3.3 et de la

.\ d
proposition 3.1 que lon est dans le cas a). Enfin, si p = (—) mod /,
p

d . d
alors(;) # 0. Si (;) = 1 (et donc p = 1 mod /) alors p se décompose

dans K en le produit de deux idéaux premiers p et p. Si £ est une puis-
p—1
sance J-iéme modulo p, alors ¢ ' est congru & 1 modulo p. Mais EE
p—1
= M, donc (£&) ' = MP ! est congru a2 1 modulo p. Il en résulte que

p—1
l

¢

est aussi congru a 1 modulo p. Par conjugaison, on en déduit que
p—1 -1

é»'h est congru a 1 modulo p, donc ép_’_—est congru a 1 modulo p, donc

bg-_1 est divisible par p. Réciproquement, si p divise b,_y, alors &2;’-1
l p-1
-

est congru & a,-;/2 modulo p. En conséquence, (5 ' = MP1 est

1
congru A (a,-1/2)% modulo p. Mais M?~! est congru & 1 modulo p,

l
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donc g, 1/2 est une puissance /-iéme modulo p et donc &, qui est

l .
congru a a,_;/2 modulo p, est une puissance /-iéme modulo p. On
1

conclut en remarquant que, s’il existe un k divisant l_)—i_ tel que p divise

by, alors p divise b,_;. Pour terminer notre démonstration il ne reste

1
d ,
plus que le cas (=)= —1 et p = —1 mod /. Dans ce cas, il y a un
p

seul idéal premier de K au-dessus de p, notons le p. Si & est une
p+1

puissance /iéme modulo p, alors ¢ ' est congru 3 un rationnel mo-

dulo p; mais ./ d n’est pas congrue a un rationnel modulo p, donc p
p+1

divise bp .1- Réciproquement, si p divise b1, alors § ! est congru |
1 l
+1
. : 2= (-1) ‘ |
a un rationnel modulo p, donc & est congru a 1 modulo p ce

qui implique que ¢ est une puissance /icme modulo p. Enfin, on

conclut comme précédemment en remarquant que, si il existe un k
p+1

1 . -
divisant % tel que p divise b,, alors p divise b ! .

4) APPLICATIONS

»

4.1. Corps tchébychéviens non ramifiés

Nous allons étudier les corps tchébychéviens dont la cl6ture galoisienne
N est non ramifiée sur L. L’existence de tels corps implique la divisibilité
par / du nombre de classes du corps L; nous reviendrons sur cet aspect aux
paragraphes 4.2 ¢t 4.3. On a le théoréme suivant:

: 1 - |
THEOREME 4.1.1. Soit & = 5 (a+b./ d) un entier du corps K dont

la norme est la puissance l-i€éme d’un entier rationnel impair M. Si les trois
conditions suivantes sont vérifiées: 1) le polynome P, (X; M) — a n’a pas
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de racines rationnelles ; 2) 1> divise le produit bd, 3) le p.g.cdde a et b
est 1 ou 2, alors & définit un corps tchébychévien T dont la cloture galoi-
sienne N est non ramifiée sur L. Réciproquement, si T est un corps tchéby-
chévien dont la cléture galoisienne est non ramifiée sur L, alors il existe un

1 L
entier quadratique £ = 3 (a+by/ d) de norme M' avec M impair qui

définit T et qui vérifie les conditions 1), 2) et 3) énoncées ci-dessus.

Démonstration. Supposons 1), 2) et 3) vérifiées. Le lemme 1.1.2 et la
condition 1) montrent que & n’est pas une puissance J-iéme dans K, donc que £
définit un corps tchébychévien T. Les conditions 2) et 3) montrent que /
divise b mais ne divise pas a; en conséquence / ne divise pas M et donc
P'idéal engendré par ¢ est premier a /. L’entier quadratique ¢ vérifie donc la
condition imposée au début de la partie 2) de ce travail et nous pouvons
employer les résultats de cette partie. La condition 3) signifie que £ n’est
divisible par aucun nombre rationnel différent de =+ 1, donc la proposition
2.2.6 montre que seuls les idéaux premiers de L qui divisent / peuvent se
ramifier dans la cldture galoisienne N de T. Le lemme 2.1.1 et la proposi-
tion 2.2.1 montrent que & est l-primaire, ce qui implique que les idéaux
premiers de L au-dessus de / ne sont pas ramifiés dans N/L. Enfin, ’exten-
sion N/L étant de degré impair, les places a Pinfini de L ne peuvent pas se
ramifier dans N, donc N/L est non ramifiée. Réciproquement, soit 7' un
corps tchébychévien dont la cldture galoisienne N est non ramifiée sur L.

1
Soit = G («+B+/ d) un entier quadratique définissant T'; comme on I'a

vu au début de la partie 2) de ce travail, on peut supposer que I'idéal prin-
cipal () nest divisible par la puissance [-iéme d’aucun idéal premier de K
qui divise /. L’extension N/L étant non ramifiée, I'idéal principal (17) engendré
par n dans K est la puissance -iéme d’un idéal, donc # et / sont premiers
entre eux et # est J-primaire; de plus, quitte & multiplier # par une puissance
liéme, on peut supposer que # est premier a 2. En vertu du lemme 2.1.1
et de la proposition 2.2.1 on peut, en remplagant éventuellement # par une
de ses puissances premiéres a / (ce qui, d’aprés la proposition 1.2.5, ne
change pas le corps tchébychévien associ€) supposer que [ 2 divise pd.
Ecrivons alors 7 = ¢4 c5& oll ¢, et ¢, sont des entiers rationnels, ou ¢, est

: . . 1 —=
sans puissance [-iéme et ou & = 3 (a+b\/ d) est un entier de K qui n’est

divisible par aucun entier rationnel différent de + 1. La norme de 7 étant
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une puissance /-iéme, on peut, en remplagant éventuellement 5 par son
carré (ce qui ne change pas le corps tchébychévien associé) supposer que les
nombres premiers qui divisent ¢, sont décomposés dans le corps K. La
proposition 2.2.6 montre qu’aucun nombre premier différent de / ne divise cq1s
comme de plus / et n sont premiers entre eux, / ne divise pas ¢, et donc
¢y = 1. L’entier quadratique ¢ définit donc le corps tchébychévien T,
D’autre part /? divisant fd divise aussi bd puisque / ne divise pas ¢, cs.
Enfin, £ définissant le corps tchébychévien T, il n’est pas une puissance
l-iéme dans K et le lemme 1.1.2 montre que P, (X; M) — a n’a pas de
racines rationnelles. L’élément ¢ répond donc i notre question.

4.2. Rappelons le lemme suivant:

LeMME 4.2.1. Soit L wun corps quadratique et M une 3- extenszon
abélienne non ramifiée de L, alors M est galoisienne sur Q.

Démonstration. Soit H le groupe de Galois de la 3-extension abélienne
maximale non ramifiée de L. Cette extension maximale étant galoisienne
sur Q, le groupe Gal (L/Q) agit par conjugaison sur H. Soit H, le sous- §
groupe de H formé des éléments invariant par Gal (L/Q) et H, celui formé
des €léments qui, par 'action de 1’élément non trivial de Gal (L/Q), se
transforment en leur inverse. Les sous-groupes H, et H, sont stables par
Gal (L/Q) et leur produit direct est isomorphe & H. En conséquence, le
corps des invariants M, de H, est galoisien sur Q et Gal (L/Q) agit trivia-
lement sur Gal (M,/L). Les ordres de Gal (M,/L) et de Gal (L/Q) étant
premier entre eux, le corps M, est le composé de L et d’une 3-extension
non ramifiée de Q. Le corps Q n’ayant pas d’extension non ramifiée, on
a M, =L ie H, = H et donc tous les sous-groupes de H sont stables
par l'action de Gal (L/Q) ce qui implique I’assertion de notre lemme.

Il résulte de ce lemme que toute extension abélienne non ramifiée de

degré 3 d’un corps quadratique (nécessairement différent de Q (\,-/t 3))_
est la cloture galoisienne d’un corps tchébychévien: en effet, ce lemme montre
qu’une telle extension est galoisienne sur Q; elle n’est pas abélienne sur
Q puisque Q‘ ne possede pas d’extension non ramifiée, c’est donc la cléture
galoisienne d’un corps cubique non galoisien; ce corps n’est pas pur puisque
le corps quadratique K contenu dans sa cloture galoisienne n’est pas le
corps Q(\/ j?:), donc (remarque 1.1.6) c’est un corps tchébychévien. On
peut maintenant donner une caractérisation des corps quadratiques dont
le nombre de classes est divisible par 3; on a:
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TaEOREME 4.2.2. Une condition nécessaire et suffisante pour que le
nombre de classes d’un corps quadratique soit divisible par 3 est que ce corps
soit de la forme Q(\ﬁ—?) (x2-4z%)) ol x et z sont deux entiers rationnels
non nuls, tels que les p.g.c.d. (z,2l) et (x,z) sont égaux a 1, que x? — 4z
est divisible par 27 et n’est pas un carré et que le polynéme X° —3zX—
n’a pas de racines rationnelles.

Démonstration. Soit L un corps quadratique. Le nombre de classe de
L est divisible par 3 si et seulement si L posséde des extensions abéliennes
non ramifiées de degré 3. Comme on I’a remarqué ci-dessus, une telle
extension est la cldture galoisienne d’un corps tchébychévien. Supposons
donc que L posséde une telle extension et notons T le corps tchébychévien
dont elle est la cloture galoisienne. Désignons par d I’entier sans carré tel

que L = Q (/ —3d) (d existe puisque L # Q (./ —3)). Le théoréme 4.1.1.

affirme ’existence d’un entier ¢ de Q (./d) dont la norme est le cube d’un
rationnel impair M, qui définit T et qui vérifie les conditions 1), 2) et 3)

1 _
de cette proposition. Ecrivons £ = 5 (a+b\/ d) et posons x = aetz = M;

on vérifie facilement que L = Q (\/ —3 (x2—4z°%) et que x et z vérifient
toutes les conditions de notre proposition, Réciproquement, soient x et z
vérifiant toutes les conditions de notre proposition; nous posons x* — 473

1
= b2d avec d sans carré. L’entier quadratique & = 5 (x+b./d) vérifie

les conditions 1), 2) et 3) du théoréme 4.1.1 donc la cloture galoisienne du
corps tchébychévien associé & ¢ est une extension abélienne non ramifiée
de degré 3 de Q(y/—3d) ie de Q (\/—3 (x2—4z%) ; le nombre de
classe de ce corps quadratique est donc divisible par 3 ce qui achéve la
démonstration.

43. Lecas [ > 3

27 P S
On rappelle que w est cos -+ Le corps L est le corps Q (w, \/ d(0*—1));

c’est une extension quadratique du sous-corps réel maximal du corps des
racines /-iéme de 'unité. On n’a pas dans ce cas de résultat aussi précis
gue celui du théoréme 4.2.2, mais le théoréme 4.1.1 permet de démontrer
= résultat suivant:
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THEOREME 4.3.1. Soient x et z deux entiers rationnels non nuls tels
que (z,2]) = (x,z) = 1, que x* — 4z' est divisible par I° et n’est pas
un carré et que le polyndme P,(X;z) — x n’a pas de racines rationnelles,
alors 1 divise le nombre de classe du corps Q (o, /(x*—4z") (0*—1) ).

Démonstration. Analogue a la partie correspondante (dans le cas
/ = 3) du théoréme 4.2.2.
Terminons ce travail par une illustration numérique. Prenons / = 5:

le corps L est alors Q(\/( —5+\/ > ) d) et I3 est 125. — Soit p un
2

nombre premier congru & 1 modulo 5. — Nous prenonsz = + p. — Dans &

les deux cas z est un carré modulo 5, donc aussi modulo 125, et 4z° est un

carré modulo 125. — Choisissons alors x tel que, d’une part, x2 soit congru |
a 4z° modulo 125 et que, d’autre part, x ne soit pas une puissance S-iéme |
modulo p (de tels x existent puisque 125 et p sont premiers entre eux). —
Le polynéme Ps (X;z) est X° — 5zX°> + 5z2X; en réduisant modulo p,
on voit que I’équation Ps(X;z) — x n’a pas de racines rationnelles. —
En conséquence, pour un tel x et un tel z, le nombre de classes du corps

Q <\/ ( —5+/5 ) (x* — 425)) est divisible par 5 dés que x2 — 4z°
2
n’est pas un carré.
En se servant, comme le fait Honda [3], d’un théoréme de Mordell (ou
de celui de Thue [9], chap. 28, qui est suffisant), on peut voir qu’il y a une
infinité¢ de corps réels et une infinité de corps imaginaires du type

Q ( \/ ( > +\/—§ ) (x*—4z°%) ) dont le nombre de classes est divisible
2

par 5. — En effet il suffit pour le voir de remarquer que, si ’on pose
x% — 4z° = y2§ avec & sans carré, alors, en faisant varier x et z assu-
jettis aux conditions décrites ci-dessus, on obtient une infinité de &
positifs et une infinité de & négatifs (6 positif correspond & un corps

—54+./5 st
2

négatif). — En fait on fixe un x qui n’est pas une puissance 5-iéme et
on montre que 'on obtient déja I’infinité de & cherchée avec cette
valeur de x. — Désignons par { une racine 25-iéme de I'unité et consi- |

imaginaire et 6 négatif a4 wun corps réel puisque
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dérons I’extension M = Q ({, 5\/ ;). — C’est une extension -galoisienne
de degré 100 sur Q; I’extension M/Q ({) est de degré 5 et I'ensemble
des 4 automorphismes non triviaux de M/Q ({) est une classe de conju-
gaison de Gal (M/Q); notons la C. — D’aprés le théoréme de
Tchebotarev, il existe une infinité de nombres premiers dont le Frobenius
est cette classe de conjugaison. — Soit p un tel nombre premier; il est tota-
lement décomposé dans Q ({) donc congru a 1 modulo 25, et il n’est pas
totalement décomposé dans M donc x n’est pas une puissance S-iéme
modulo p. — En conséquence, si z = =+ p, le nombre de classes du corps

Q <J ( _5+\/ : ) (x2—4z5)> est divisible par 5 dés que x? — 4z°
2

est divisible par 125. — Prenons x = 2 et z = p alors x> — 4z° = 4
— 4p5 = y2§ est divisible par 125. — Pour un § fixé I’équation 4 — 4p°
= 325 n’a, d’aprés le théoréme de Thue, qu’un nombre fini de solu-
tions; une infinité de p étant permis, on obtient donc Pinfinité de ¢
cherchée et ces 0 sont clairement négatifs. — De méme, en prenant
x =11 etz = — p, on obtient 'infinité de J positifs cherchée. —

Remarque. On peut montrer qu’en fait, dans le cas / = 5, les condi-
tions nécessaires a la divisibilité par 5 du nombre de classes de

Q <\/ ( =3 +2 V.3 ) (x?— 4z5)> énoncées dans le théoréme 4.3.1. sont

suffisantes. —
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