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CORPS RÉSOLUBLES

ET DIVISIBILITÉ DE NOMBRES DE CLASSES D'IDÉAUX

par Ph. Satgé

Plusieurs auteurs se sont attachés à construire des corps quadratiques

dont le nombre de classes est divisible par 3 (par exemple [1], [2], [3], [4], [5]).

Cependant, c'est seulement en 1968 que Taira Honda [3] a démontré l'existence

d'une infinité de corps quadratiques réels dont le nombre de classes

est divisible par 3. Nous complétons ici ce résultat de Honda en donnant

une caractérisation de tous les corps quadratiques dont le nombre de classes

est divisible par 3 (Th. 4.2.2). En fait, cette caractérisation apparaît ici

comme cas particulier d'un critère plus général qui affirme la divisibilité

par un nombre premier impair / du nombre des classes de certains corps
cycliques de degré l - 1 (Th. 4.3.1). — Ce critère permet de montrer
l'existence d'une infinité de corps imaginaires et d'une infinité de corps
réels, cycliques de degré / — 1, dont le nombre de classes est divisible

par /. Pour cela, nous sommes amenés à étudier les corps obtenus en

adjoignant au corps Q des rationnels la somme des racines /-ièmes de

deux éléments conjugués d'un corps quadratique. Sous certaines conditions,
nous obtenons ainsi des corps, généralement non galoisiens, que nous
appelons « Tchebycheviens » (en raison du lien qui unit le polynôme minimal

de leurs générateurs et les polynômes classiques de Tchebychev). Ces

corps sont une généralisation naturelle des corps cubiques: en effet, les

formules de Cardan montrent que tout corps cubique est obtenu en adjoignant

à Q la somme des racines cubiques de deux éléments conjugués
d'un corps quadratique. Les corps ainsi obtenus possèdent certaines
propriétés remarquables que nous développons pour elles-mêmes dans les

trois premiers paragraphes de ce travail.
Dans le premier paragraphe, nous définissons et étudions les propriétés

générales de ces corps (dans cette partie il n'est pas nécessaire de

supposer / premier et nous remplaçons / par un entier n impair quelconque).
Dans le second paragraphe, nous calculons leurs discriminants par la

méthode des représentations d'Artin.
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Dans le troisième paragraphe, nous donnons la loi de décomposition
des nombres premiers dans ces corps non galoisiens.

^n^n' dans 'e quatrième paragraphe, nous établissons les propriétés
de divisibilité des nombres de classes annoncées au début en construisant
des corps tchébychéviens dont les clôtures galoisiennes sont des extensions
abéliennes non ramifiées de degré / de certains corps cycliques de degré — 1.
Les paragraphes 2, 3 et 4 sont essentiellement indépendants; seuls quelques
lemmes établis au paragraphe 2 servent dans les paragraphes 3 et 4.

L idée d étudier les corps tchébychéviens m'a été donnée par Pierre
Barrucand; les trois premiers paragraphes de ce travail ont été élaborés
avec lui; je tiens à le remercier ici.

0) Notations

Nous désignons par nun nombre positif impair (dans les parties 2), 3)
et 4) ce nsera supposé premier, nous poserons alors /), par le corps
quadratique Q Çjd)oùd est sans carré, par <5 le discriminant de et par £
et £ deux entiers conjugués (non rationnels) de K tels que M" où M
est un entier rationnel. Nous choisissons une racine n-ième de £ que nous

notons yy et nous posons M/yr ^ exp^et L — Q (co,\jd (co — 1)). Pour tout entier positif k, nous posons

h (ny/â* + (Vf)/C> t(k) + r*nJï,
T( — Q (t(k)), t t(0) et T r(0). Nous désignons par N la clôture
galoisienne de T. Enfin, si A est un anneau, Ân est le semi-groupe des puis-
sanceses «-ièmes des élémentsde A et A* est le groupe des éléments inversibles

de A.

V n

1) Etude générale

1.1. Une famille de polynômes

Pour tout entier positif k, nous désignons par Tk{X) le polynôme
vérifiant Tk(ez + e~z) ekz + (c'est-à-dire, à une légère modification
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près, le fc-ième polynôme de Tchébychev de 1ère espèce). On a T0 (X)
2, T± (X) X et Tk (X) XT^^X) - Tk_2 (X).
Posons Pk (X; M) - Mk/1 Tk (X/^Jm). On vérifie que, pour k > 0, les

Pk (X; M) sont des polynômes unitaires de degré k à coefficients entiers, que

P0 (X; M) 2, que P± (X; M) Xet que Pk (X; M) XPk_1 (X; M)
- MPk-2 (X; M).

Lemme 1.1.1. Pour tout entier positif k, on a Pk(t ; M) tk.

Démonstration. Soit z un nombre complexe tel que ez n^/Ç1^/'M, alors

+ e"z t/y/M et donc Pk (t; M) Mk/2 Tk (t/^M) Mk/2 (ekz

+ e~kz) tk.

Soit tr (Ç) Ç + Ç; le lemme précédent appliqué avec k n montre
que Pn (t, M) — tr (£) 0. De même, pour toutj on a Pn (tU); M) - tr (£)

0. On voit facilement que les tU) sont distincts deux à deux (car Ç n'est

pas rationnel), ce sont donc les n racines de Pn (X; M) — tr (£). De cela

on déduit le lemme suivant:

Lemme 1.1.2. £ est une puissance w-ième dans K si et seulement si
le polynôme Pn (X; M) — tr (£) admet une racine rationnelle qui permet
très simplement de savoir si £ est une puissance w-ième dans K. Enfin on a
le critère d'irréductibilité suivant:

Proposition 1.1.3. Le polynôme Pn (X; M) ~ tr (£) est irréductible si
et seulement si, pour aucun diviseur premier l de n, le polynôme
Pi (X;Mw//) — tr (£) n'a de racines rationnelles.

Démonstration. Notre polynôme est irréductible si et seulement si le
corps T Q (0 est de degré n sur Q. Mais, n étant impair, T est de degré n
sur Q si et seulement si K{n^J Ç) est une extension de degré« sur K. Cela
équivaut à ce que, pour aucun diviseur premier / de «, le nombre £ n'est
une puissance /-ième dans K; on conclut à l'aide du lemme précédent.

1.2. Les corps tchebycheviens

Définition 1. 2. 1. Le corps T obtenu par le procédé précédent est
dit tchebychevien si il est de degré n sur Q. Dans ce cas on dira que T est
le corps tchebychevien associé à £ ou que £ est un entier quadratique
définissant le corps tchebychevien T.
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Dans toute la suite, nous supposons que est tchebychevien. Les U)

sont donc les conjugués de T; le corps T est totalement réel si cl < 0 et
simplement réel (i.e. un et un seul conjugué réel) si 0. De plus, pour
tout diviseur m de n,le corps Q tm)est un sous-corps de T qui est
tchebychevien de degré «/m sur Q ; en conséquence, si est la décompo-

j
sition canonique de n et si rij n/l"/, alors T est le composé des corps
tchebycheviens Q {t

Nous allons maintenant déterminer la clôture galoisienne N du corps
tchebychevien T. Pour cela nous aurons besoin d'un lemme:

Lemme 1.2.2. Le nombret* y/—nyJ1) appartient à T.

Démonstration. On a - t Ç-J Ç + 0 donc

T ("J O T (yt2-4M). D'autre part K(?yJT)contient ces
deux corps ayant même degré sur Q sont égaux. En conséquence, l'auto-
morphisme non trivial de K("y/Ç)/Tenvoie Jd sur — y/d et -
sur — y]t2 — 4M donc laisse invariant y/d -Jt2 — 4M; cet élément est
donc dans T. On conclut en remarquant que les deux racines de l'équation

X2 — tX + M 0 sont ny/ £ et donc que \/ f
y/t2 — 4M (au signe près).
On peut maintenant démontrer la proposition suivante :

PROPOsiTioN 1.2.3. La clôture galoisienne N de T est le corps
Q (t, a*, v'd{a)2-\)) c'est-à-dire le composé TL de T et L,

Démonstration. Les conjugués de t étant les t u\ on a N Q (* *(0),

r(1),..., t't"-"). On a tw+ t(n~ V2œt et <*>_*<»-«** + 2i sin —
n

(M\/^ ~~n\f D' S0lt t(1) — *(n-1) +2y/d (co2 — 1) — (où ** est défini,

dans le lemme précédent). En conséquence Q (t, co, y/ d(œ2 — 1)) est inclus
27T

dans N. D'autre part, pour tout jon a t(J> 2/ cos —) +
n

t 271 \
t*271 2.71

sm 0 —) ,*
2i -jj-sin (j — 21cos (j —+ 2y/d (co2-1) —Jd nn v 271,

sm(-)
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(-ln\sm (j —

Mais cos (j—)et -— sont dans Q (co) et t* est dans Q
n /27c-(7)

donc est dans Q (t, co, ^(co2-!) et donc JV est inclus dans Q (f, m,

v/^(cû2-1)), ce qui achève la démonstration.

Le corps L Q (co, est une extension cyclique de Q

de degré cp (ri) (cp est l'indicateur d'Euler) sauf si K est un sous-corps

(p (ri)
imaginaire de Q (C) auquel cas ce degré est —-— Si n est premier, on

montre facilement la proposition suivante:

PROPOsiTioN 1.2.4. Si n est premier et si K n'est pas un sous-corps

imaginaire de Q(Q, alors Gal (N/Q) est isomorphe au groupe métacyclique

(ah\ „
(c'est-à-dire au groupe multiplicatif des matrices | ou a et b sont

dans le corps à n éléments et a ^ 0).

Démonstration. N est la clôture galoisienne d'un corps résoluble de

degré premier. Le groupe Gal (N/Q) est donc isomorphe à un sous-groupe
du groupe métacyclique. Mais Gai (L/Q) est un quotient d'ordre cp(ri) de

Gai (N/Q), ce dernier est donc le groupe métacyclique tout entier.

Le nombre n étant toujours supposé premier, le cas où K est un sous-

corps imaginaire de Q(Ç) se traite de la même manière. Si K ^ Q>/— 3 ou
si n ^ 3, on trouve que Gai (N/Q) est isomorphe au sous-groupe d'indice 2

(a b\
du groupe métacyclique formé des matrices I 1 ou a est un carre non

nul dans le corps à n éléments. Si K Q (sj — 3) et n 3, alors L Q
donc N T est une extension cyclique d'ordre 3 de Q.

Remarque. Dans lè cas général (i.e. n non premier) on a un résultat

.nalogue: si K n'est pas un sous-corps imaginaire de Q(Ç)5 le groupe
Gai (N/Q) est isomorphe au sous-groupe du groupe multiplicatif de l'an-

eau M2 (Z/nZ) des matrices 2 x 2 sur l'anneau Z/riZ formé des matrices

(ab\
u type I j où a est inversible. Si K est un sous-corps imaginaire de Q(Q
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différent de QÇj — 3) où si 3 ne divise pas n, alors Gai (AyQ) est un sous-
groupe d'indice 2 du groupe précédent.

Enfin, si et £2 sont deux entiers de K dont les normes sont les
puissances n-ièmes de rationnels mais qui, pour aucun diviseur premier / de
ne sont des puissances /-ièmes dans K, on a la proposition suivante :

Proposition 1.2.5. Lescorps T,et T2 coïncident si et seulement
si£i iiV" où k est un entierpremier à n et où t] est un élément de K.

Démonstration. Si TtT2, on voit facilement que K (Ç,
K (£, £2) et donc (théorie de Kummer) éi Q 'l>" où k est un entier

premier à net où tp est un élément de K (Q. On sait ([6] par exemple) que
cela implique une égalité i' 2 — ç2 avec dans K. Réciproquement, si

£i &nn, on a "jtiy + l"y/&_ + nn-JÏÏ- Posons i/ « +

ßV^jl vient "^î + Vli «(">/î2 + VI
"x/V)- Les lemmes 1.1.1 et 1.2.2 montrent que "JQ + Vl* ef-

\Jd("2 'VV sont dans T2, donc que Tx est inclus dans T2 ; ces

corps ayant même degré, on a Tt T2. C.Q.F.D.

Remarque 1.2.6. Si n3, les formules de Cardan montrent que les

corps tchebycheviens coïncident avec les corps cubiques non purs (un corps
pur étant un corps du type Q (V»i) avec m rationnel).

2) Le calcul du discriminant

Nous supposons maintenant que n est premier (impair); pour souligner
cette hypothèse nous posons nl.Nousallons calculer le discriminant A
du corps T. Comme on pourra le constater sur la formule, ce discriminant
n'est pas, en général, le discriminant du polynôme définissant T. La
formule est donnée dans le premier paragraphe.

2.1. La formule

Nous supposerons dans toute cette partie que l'entier quadratique l
n'est divisible par la puissance l-ième d'aucun idéal premier de Kqui divise /;
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tous les corps tchebycheviens sont obtenus à l'aide de tels entiers (en effet,

l'idéal principal engendré par £ s'écrit alb où a et b sont des idéaux entiers

et où b n'est divisible par la puissance /-ième d'aucun idéal premier;
choisissons dans la classe de a un idéal c premier à / et désignons par a un

générateur de a~ 1c; le nombre est un entier de K qui n'est divisible par
la puissance /-ième d'aucun idéal premier contenant / et le corps tcheby-

chevien défini par cet entier est celui défini par £). Pour énoncer la formule

du discriminant, nous aurons besoin de quelques préliminaires. Pour tout
1

entier /, on définit les entiers rationnels at et bt par l'égalité Ç -
ißi+bijd)-, on a alors le lemme suivant:

LeMMe 2.1.1. On suppose que l ne divise pas la norme de £, alors

I) il existe un entier % premier à l tel que l divise le produit bxd (et

/d
on peut toujours trouver un tel t divisant l — —

II) si, pour un entier % premier à /, le produit bxd est divisible par /2,
alors pour tout entier i premier à /, le produit btd est divisible par l2 dès

qu 'il est divisible par L

Démonstration

d
/ _ iI) Si / divise d, c'est clair. Si (y) 1, alors ç 1 est congru à 1

modulo / i.e. t}'1 1 + / + ß\/d
ayec a et ß entiers rationnels.

d
On a donc bl-1 /ß c'est-à-dire que / divise bi-±. De même si (y)

- 1, alors Çl+1 est congru à un entier rationnel modulo / et le même
raisonnement montre que / divise bi + 1.

II) Soit t un entier premier à / tel que l divise bxd. Il est facile de voir
que l2 divise bxd si et seulement si £T est congru à un entier rationnel modulo
le carré d'un idéal premier de K au-dessus de /. On conclut en remarquant
qu'alors, pour tout entier i premier à l tel que C est congru à un rationnel
modulo /, cet entier quadratique éj est congru à un rationnel modulo /2.
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On définit / de la manière suivante: on pose j 1 si / ne divise pas la
norme de £ et si, pour les entiers i premiers à /, le produit btd est divisible
par l2 dès qu'il est divisible par / et on pose j 0 sinon. De plus si c est
le plus grand entier naturel divisant £ et si ç c1 cl où c1 est sans puis-

7-1
sance /-ième, on pose g P • Enfin on pose X ou

i
2

Pfl
(?>-»

P
^ + l
—-— suivant que / est congru al ou à 3 modulo 4 et on désigne par

(/, J) le p.g.c.d de / et de d. Le discriminant À de T est alors donné par
la formule suivante:

ll-2j\ô\(l-l)/2 l-l
(2.1.2) \A|='11

(On rappelle que-<5 est le discriminant du corps K Q {y/d)).

2.2. Démonstration de la formule

Rappelons qu'un élément £ de K est dit / primaire si il est étranger
à / et si l'extension de Kummer K (C, lyj0/K (Q est non ramifiée au-
dessus de /. On a alors la proposition suivante:

Proposition 2.2.1. L 'entier j étant celui défini au paragraphe précédent,
on a 7=1 ou 0 suivant que Ç est ou n 'est pas l-primaire. •

Démonstration. Pour plus de concision, nous supposerons dans cette
démonstration que le corps K n'est pas inclus dans Q (0; le cas où K est
inclus dans Q (0 se traite de façon analogue. Nous désignons par £ un idéal
premier de K (0 au dessus de / et par 1 l'intersection de £ et de K. On
vérifie que l'indice de ramification de £ sur Q est / - 1, donc ([7], § 39,

satz 118-119; [8]) ^ est /-primaire si et seulement si il existe dans K(Ç) un
élément x tel que l'on ait la congruence suivante:

(*) £ xl (mod £*).



^ 173 —

Montrons que (*) est équivalente à la congruence suivante:

(**) £ y (mod l2) avec y dans K.

Si £ est le seul idéal premier de K (0 au dessus de I, alors en prenant
les normes dans l'extension K (0/K, la congruence (*) implique NK(0/K (0

(Nk(0/k {x))1 (mod £') d'où 0"1 zl (mod l2) avec z dansi£ ce qui

implique (**). Sinon, soit Kx le corps de décomposition de 1 dans K (QjK
et lj l'intersection de £ et de K±. L'idéal £ étant le seul idéal de K(Ç) au

/ - 1
dessus de li et le degré de K (QjK, étant un raisonnement analogue

à celui que l'on vient de faire montre que (*) implique l'existence d'un z1

i- î
dans K1 vérifiant la congruence f 2 z\ (mod l2); l'idéal 1 étant totalement

décomposé dans K/K± cela implique l'existence d'un z dans K tel
z-i

2

que £ zl (mod I2) ce qui entraîne (**). Réciproquement, si 1 est

totalement ramifié dans K(QjK, alors (**) implique £ y1 (mod £2(/~1})
ce qui donne (*). Sinon, 7 est ramifié dans K; désignons alors par A l'anneau
des entiers K. Le noyau de la surjection canonique de (^4/l3)* sur (Aj\2)*
est le sous groupe de (^4/l3)* formé des classes des 1 + kloixk 0,1.
La congruence (**) implique donc l'existence d'un entier k compris entre 0

et / - 1 tel que £ (1 +kl) y1 (mod I3). En prenant la norme sur Q, il
vient M1 (1 +kl)2 (Nk/q (y))1 (mod l2) et donc 1 + kitst une puissance
/-ième modulo /2 i.e. modulo l'idéal l4. On a donc £ xl (modi3) d'où

i xl (mod £3(ï_1)/2) ce qui implique (*) et achève la démonstration de

l'équivalence de (*) et (**).
Soit maintenant i un entier tel que / divise btd. On a NK/Q (0) Mil
\ (af +bfd). D'autre part bfd/4 est dans l'idéal l2 (en effet, si / ne divise

pas 7, alors / divise bt donc l2 divise bf et, si / divise d, alors / est dans I2).
Le rationnel af/4 est donc une ï-unité qui est une puissance /-ième
modulo l2; il en est donc de même de Ija^ En conséquence 0 est une
puissance /-ième modulo l2 si et seulement si (2/af)0 1 + d
en est une. Si l2 no divise pas btd, alors 1 + bio^1 y/d est congru à
1 modulo 1 mais pas modulo I2 donc n'est pas une puissance /-ième

modulo l2. Si l2 divise btdet si / ne divise pas d alors 1 + bt a]1 y]d est
congru à 1 modulo l2 donc est une puissance /-ième modulo /2. Si /2 divise

M et si / divise d, alors 1 + bt a]1 yfd est congru à 1 modulo I3 donc est
une puissance /-ième modulo I2 ce qui achève la démonstration.
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Venons-en maintenant à la démonstration de la formule 2.1.2. Pour
alléger la rédaction, nous supposerons encore que n'est pas inclus dans
Q (0 Ie cas ou Kest inclus dans Q (Q se traite de manière analogue. Cette
démonstration repose essentiellement sur les méthodes décrites dans [8],
nous adopterons donc pour l'essentiel les notations et la terminologie de
cet ouvrage.

On sait ([8], chap. IV, prop. 6, cor. 1) que le discriminant A de Test le
conducteur d Artin de la représentation de Gal (IV/Q) induite par la
représentation triviale de Gal (N/T).Pour calculer ce conducteur désignons par
(Xk)k i, i-i les /- 1 représentations non triviales de degré 1 de
Gal (N /L),par1

n,q et 1N/T les représentations triviales de Gal (IV/Q) et
de Gai (N/T) et, pour toute représentation p d'un sous-groupe de Gai (IV/Q)
par p* la représentation induite par p sur Gai (IV/Q). On a alors l'égalité

l- 1

(/_1) ljv/r (^-1) 1jv/q + Yjxlcommeon le vérifie en calculant le
k l

caractère de chacun des deux membres. De cette égalité on tire, en prenant
les conducteurs d'Artin, l'égalité

(2.2.2) -«-'-'ri /(*;>
k 1

OÙ/(-/k) est le conducteur d'Artin de y *k.

Le conducteur d'Artin de yk est le produit du discriminant du
corps Lpar la norme sur Q du conducteur d'Artin de yk. Ce dernier étant
le conducteur de l'extension abélienne N/L, la formule 2.2.2 donne

(2.2.3) ^ dLNL/Q (f)
où f est le conducteur de l'extension abélienne N/L.

Le calcul de dL ne pose pas de difficulté, on trouve :

(2.2.4) ÂL —

[(à]
-T—1

d) 1(1, d)\

ll~2

Q

(1-DI2

SI / 1 mod 4

si l 3 mod 4

Le calcul de A est donc ramené à celui du conducteur f de l'extension
N/L. Cette extension étant cyclique de degré / et le corps N étant galoisien
sur Q, l'idéal f est de la forme

(2.2.5) f (n-Ö)* X (I7p)
fi
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où x est un entier naturel, où £ décrit les idéaux premiers de L qui

contiennent / et où p décrit les idéaux premiers de L étrangers à / et ramifiés

dans N. Avec les notations introduites dans 2.1, on a la proposition suivante :

Proposition 2.2.6. Soit p un nombre premier différent de L Les idéaux

premiers de L contenant p se ramifient dans N si et seulement si p divise

cl et (-) 1 (on convient que (-) =1 si et seulement si 2 est décomposé

dans K).

Démonstration. Soit p' un idéal premier de K (0 au dessus de p. Posons

^ p' n A et p p' n L. Le comportement de p dans N/L est identique

à celui de p' dans N(0/K(0. Mais N(0 K(0 ly/Ç) donc p' se ramifie
dans N (Q/K (0 si et seulement si son exposant dans l'idéal de K (0 engendré

par £ est premier à /. Le degré de K (Q/K étant premier a /, ceci est équivalent
à ce que l'exposant de p dans l'idéal de K engendré par £ est lui même

premier à /. La norme de £ étant une puissance /-ième, cela implique que p

se décompose dans K i.e. que (-) +1. Dans ce cas, en rempla-
P

çant éventuellement ^3 par son conjugué, l'idéal de K engendré par £ est
de la forme (p)*1 p*2 a où (p) est l'idéal principal de K engendré par p,
où x1 et x2 sont deux entiers naturels et où a est un idéal de K étranger
à p. Il résulte de la définition de c1 que p divise cx si et seulement si /
ne divise pas x±. Mais 2x± + x2 est l'exposant de p dans la norme de £

donc est divisible par /. En conséquence x1 + x2 qui est l'exposant de p
dans l'idéal engendré de K engendré par £ est divisible par / si et seulement
si / divise x± et donc si et seulement si p ne divise pas c± ce qui achève la
démonstration.

Il reste à calculer le x de la formule 2.2.5. Pour celà, on choisit un idéal
premier fi' de K(0 au dessus de / et on pose 1 fi'nletfi £'ni.
On désigne respectivement par s et s' les plus grands entiers tels que les

groupes de ramifications d'indice inférieur s et s' de £ et fi' dans N/L et
N (Q/K (0 sont non triviaux (s et sont donc des entiers relatifs supérieurs
ou égaux à -1). L'extension N/L étant cyclique de degré /, on sait que
x s + 1. On sait aussi que s -1 est équivalent à la non ramification
de fi dans N/L donc à s' — 1. Si s # — 1, les valeurs de s et s' sont liées

par le lemme suivant:
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Lemme 2.2.7. On suppose s'#-1. On a alors s F/2 ou s s'
suivant que 2est ou n 'est pas ramifié dans (Q/L

Démonstration. On désigne respectivement par L, K(Q et N(Q les
complétés de L, N, K(Q et N(Qau dessus de /. Le degré de L(Q/L étant
premier à l, les groupes de ramifications d'indice strictement positif de
dans NILsont identiques à ceux de ce même dans A (Q/L et à ceux de

2'dans N (Q/L (fi). Posons G Gal (N (Q/L) Gai
Alors toujours avec les notations de [8], chap. IV), v défini par
v 91v({j/ÄCO est le plus grand réel tel que G" est non trivial. Mais G"
est cyclique d'ordre let Hest d'ordre 2, donc v est le plus grand réel tel
que G"H/ Hest non trivial. D'autre part G" H!H (G/H)v et G/H

Gai (N/L) donc <^fL (v) est le plus grand réel tel que Gai (A/LUA/K
v TN/L(v)

est non trivial ce qui signifie que s Enfin ^ £* (v)
'I'n/l ° ^ n(q/l (s')— 'j'ivio/wC5'); on achève la démonstration en remarquant

que est multiplication par 1/2 où l'identité suivant que £
est ou n'est pas ramifié dans K (£)

Inne nous reste donc plus qu'à calculer s'; c'est l'objet de la proposition
suivante:

Proposition 2.2.8. Sildivise c1 on a s' /. Sinon, si j 1 on a

s -1 ; si y 0 on a s'— ou 1 suivant que l divise ou

ne divise pas d.

Démonstration. Si / divise c1 alors I divise £. Par hypothèse l' ne divise
L donc 1 exposant de I dans 1 ideal principal engendré par é est premier

à /. Le degré de K(Q/L étant premier à /, il en est de même dp l'exposant
de 2'dans l'idéal de K(Qengendré par £ et donc ([7]) on a s' l.

Si / ne divise pas cuilrésulte des hypothèses faites sur £ que I ne divise
pas Q Si j 1,alors£ est /-primaire donc 2' est non ramifié dans
A(Q/L(Q donc s— 1. Si j 0, on désigne par Fie plus grand entier
tel que £ est, dans K (Q, une puissance /-ième modulo 2'Y. On sait ([7])
que Y< / et que s'l-Y. H ne reste donc plus qu'à calculer F. On a vu
dans la démonstration de la proposition 2.2.1 que j 0 est équivalent à
ce que £ est, dans K,congruà une puissance /-ième modulo I mais pas

modulo l2. Si / divise d, l'indice de ramification de (Q/L est
~ 1

et
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donc \ est, dans ^(0, congru à une puissance /-ième modulo £'C~1)/2

mais pas modulo £'1+(z~1)/2; on a donc s' I - (/-1)/2 (/+1)/2.
Si / ne divise pas d, l'indice de ramification de (Q/if est / — 1 et donc £

est, dans if(Q, congru à une puissance /-ième modulo mais pas

modulo £'*; on a donc s' l - (/— 1) 1, C.Q.F.D.
En regroupant tous ces résultats, on obtient la formule 2.1.2.

3) Décomposition des nombres premiers dans T

On désigne toujours par T un corps tchébychévien de degré premier /,

par £ un entier quadratique définissant T et assujetti à la condition imposée

au début de la partie 2 de ce travail, par N la clôture galoisienne de T et

par L le sous-corps d'indice l de N. De plus, si p est un nombre premier,
on note (p)L et (p)T les idéaux principaux de L et F engendrés par p. Enfin,

pour alléger la rédaction, on suppose dans toute cette partie que le degré
de 2V7Q est / (/— 1).

On a la proposition suivante :

Proposition 3.1. Soit p un nombre premier et p un idéal premier
de N au dessus de p ; on note pL / 'intersection de p et de L.

a) Si pL est inerte dans N/L, alors p est inerte dans T (c 'est-à-dire

(p)T est un idéal premier de T).
b) Si pL est ramifié dans N/L, alors p est totalement ramifié dans T

(i.e. l'idéal (p)T est la puissance l-ième d'un idéal premier de T).
c) Si pL est décomposé dans N/L et si (p)L (qi...q^p)ep où q1?..., q9p

sont des idéaux premiers de L distincts deux à deux et de degré résiduel
fp9 on a (p)T ^3 ^ßgp)ep où '^3, ?figp sont des idéaux premiers
de T distincts deux à deux, le degré résiduel de ^3 étant 1 et les degrés
résiduels des ^ étant fp.

Démonstration.

a) L'hypothèse implique que le degré résiduel de p dans N/Q est divisible
par /. Posons pr p n T. Ce degré résiduel est le produit du degré résiduel
de pr dans T/Q par le degré résiduel de p dans N/T. L'extension N/T étant
galoisienne, ce dernier doit diviser le degré de l'extension N/T; il est donc
premier à /. En conséquence / divise le degré résiduel de pT dans T/Q.
Le degré de T/Q étant /, on a le résultat cherché.
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b) Même démonstration qu'au a) en remplaçant « degré résiduel »
par « indice de ramification ».

c) Notons <Ti, a2,...,a,les/ automorphismes de l'extension N/L en
convenant que est l'identité. Pour 1, / on pose p,- cr;(p)
(donc px p); par hypothèse les p; sont distincts deux à deux.

On désigne par G_ t (p.) le groupe de décomposition de p;; l'ordre de
G-i (P.) est epfpqui est premier à /, donc le corps des invariants de G_ 1 (p;)

contient au moins un conjugué de T;quitte à remplacer par un de ses
conjugués, on peut donc supposer que T'est inclus dans G_1 (pj. On pose

Vut P(° T et T(l) ^T1 (T).Deplus on note le complété de

en p x et 1 adherence de T^^ dans N. Avec nos choix des indices, on
a t(1) T et T est le corps Qp des nombres p-adiques, ce qui signifie que
p1; Test non ramifié et de degré résiduel 1 dans D'autre part, si / > 1,

le composé T.r(,) est N, donc le composé T. T( i) est N et donc T(i) N.
Cela signifie que le degré résiduel et l'indice de ramification de pt dans
N/Q, qui sont respectivement égaux à ep et fp, sont égaux à ceux de
Pi n r(0 dans T('>/Q. Mais (toujours par le choix de nos indices) ceux-ci
sont égaux à ceux de p; n Tp,.,r dans T/Q. Enfin, l'extension N/T
étant galoisienne, si pk/r p; r alors il existe un t dans Gai (N/T) tel
que t (pj.) — pj. Mais pkn Lpj n LpL, donc la restriction de tà L est dans le groupe de décomposition de pL dans L/Q. Ce groupe est

I- 1
d ordre epfp donc t est dans le sous-groupe de Gai (N/T) d'ordrel-l g"
—— En conséquence, parmi les l -1 idéaux p2 r,..., p, r il y en a au9p
moins gp distincts. On a donc trouvé, dans T, au dessus de p, un idéal
premier non ramifié de degré résiduel 1 dans T/Q et une collection d'au
moins gp idéaux premiers d indice de ramification cp et de degré résiduel fdans T/Q. Comme |T:Q] / 1 + gpepfp, cette collection d'idéaux
premiers est constituée d'exactement gp éléments et on a trouvé tous les
idéaux premiers de T au dessus de p; cela achève la démonstration.

On rappelle (voir 2.1) que j1 ou 0 suivant que £ est ou n'est pas
/-primaire et que, si c est le plus grand entier rationnel divisant £, on a
posé cCi cl2avec sans puissance /-ième et n p. En plus,

P\ci
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pour tout nombre premier p, on pose (p)L c\9p)eP où les q, sont des

idéaux premiers de L distincts deux à deux de degré résiduel fp dans

L/Q. L'extension L/Q étant cyclique, le calcul de ep9 fp et gp est simple.

Avec ces notations, on a:

THÉORÈMe 3.2. La décomposition d'un nombre premier p dans T est

donnée par les règles suivantes :

1) si p / et si j 0 on a (/)r ll où 1 est un idéal premier de T.

Si j 1 on a (/)r l(ll5... ln)el où 1, Ii..., U sont des idéaux premiers

de L distincts deux à deux, le degré résiduel de I étant 1 et les degrés

résiduels des 1 i étant fu sauf si / 3, d 6 (mod 9) et si f - (a + bjd)
avec b non divisible par 9 auquel cas 3 est inerte dans T (i.e. (3)T est premier).

2) Si p divise g9 alors (p)T ^ où Sß est un idéal premier de T (si l

divise g et ^ 1, alors j 0 et on retrouve un cas de 1)).

3) Si p ^ l et si p ne divise pas g9 alors en supposant £ premier à p
(ce à quoi on peut toujours se ramener quitte à changer le £ définissant T),
on a deux cas

a) Si £ est, modulo un idéal premier de K au-dessus de p, une puissance

/-ième, alors (p)T ^3 ($i ^3ëp)ep où ^3, ^31?..., tygp sont des

idéaux premiers de T distincts deux à deux, le degré résiduel de ^3 étant 1

et les degrés résiduels des ^ étant fp.

b) Si Ç n'est pas, modulo un idéal premier de K au-dessus de /?, une

puissance /-ième, alors p est inerte dans T (i.e (p)T est un idéal premier).

/ d
De plus, si p fÉ - mod /, on est toujours dans le cas a). Sinon,

p

pour tout entier k, posons - («ak + bh yjd) ; on est dans les cas a)

1 d
ou b) suivant qu'il existe ou qu'il n'existe pas de k divisant -{p — (-))

L p
tel que p divise bk.

Démonstration. Nous aurons besoin du lemme suivant:
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Lemme 3.3. Soit p un nombre premier; si les idéaux premiers de L
qui contiennent p sont inertes dans N/L, alors p est totalement décomposé
dans L.

Démonstration du lemme. Soit p un idéal premier de N contenant p
et pL l'intersection de p et de L. Supposons pL inerte dans N/L et désignons

par G_ 1 et G0 les groupes de décomposition et d'inertie de p dans N/Q,
A

par JV_ et N0 les corps des invariants de G_ t et de G0, par N le complétéAAA A
de TV" en p et par N-t, N0 et L les adhérences de iVL1? N0 et L dans N.

A A A
Le corps N-x est le corps Qp des nombres /?-adiques. L'extension N0/N~ x

est cyclique non ramifiée et son degré est égal au degré résiduel de p dans
A

N/Q donc est divisible par /. Enfin, l'extension L/Qp est cyclique et son
indice de ramification est ep. Ce ep est aussi l'indice de ramification de p

A A
dans N/Q ; le composé L. N0 est donc une extension abélienne de Qp
dont l'indice de ramification et le degré résiduel sont égaux à l'indice de

A
ramification et au degré résiduel de p dans N/Q. En conséquence N est

A A
le composé LN0, donc est abélien sur Qp et donc GL t est un groupe abélien.
Mais, pL étant inerte dans N/L, l'ordre de G_ t est divisible par /. Le seul

sous-groupe abélien de Gai (N/Q) dont l'ordre divise l est Gai (N/L),
donc G_x est Gai (N/L) ce qui implique que p est totalement décomposé
dans L, C.Q.F.D.

Revenons à la démonstration du théorème:

1) Soit fi un idéal premier de N au-dessus de / et fiL l'intersection de fi
et L. Si j 0, alors fiL est ramifié dans N/L et on conclut avec la proposition

3.1. Si y 1, fiL est non ramifié dans N/L, donc est décomposé ou
inerte. Si fiL est inerte, alors, d'après le lemme 3.3, / est totalement décomposé

dans L. Le corps L étant une extension quadratique du sous-corps réel

maximal du corps des racines /-ièmes de l'unité, on a nécessairement 1 3.

Le corps L est alors Q(>/ — 3d) donc il faut d 6 (mod 9) pour que 3 soit
totalement décomposé dans L, ce qui démontre la première partie de notre
assertion. Enfin, £ étant 3-primaire, la proposition 2.2.1 montre que 3

divise b. On tire alors de [8], par des arguments analogues à ceux employés
dans la démonstration de la proposition 2.2.1, que dans N/L, l'idéal fiL
est inerte si / ne divise pas b et décomposé si / divise b. Notre résultat est

donc conséquence de la proposition 3.1.
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2) Si p # /, la proposition 2.2.6 montre que les idéaux premiers de L

au-dessus de p sont ramifiés dans N/L. Si p h alors j 0 et on a le

nême résultat. On conclut alors à l'aide de la proposition 3.1.

3) La proposition 2.2.6 montre que les idéaux premiers de L au-dessus

de p sont non ramifiés dans N/L; en conséquence, ils sont inertes ou décomposés.

Ils sont décomposés si et seulement si les idéaux premiers de Q(Ç)

au-dessus de p sont décomposés dans K(Ç, lyj0 i.e si et seulement si {
est une puissance./-ième dans les complétés de K(Q en les idéaux premiers

qui divisent p. On sait (par exemple [4]) qu'il en est ainsi si et seulement

si Ç est une puissance /-ième dans les complétés de K en les idéaux premiers

qui divisent p. D'après le lemme de Hensel, il en est ainsi si et seulement si {
est une puissance /-ième modulo les idéaux premiers de K qui divisent p.

Comme de plus ££ est une puissance /-ième, il en est ainsi si et seulement si £

est une puissance /-ième modulo un des idéaux premiers de K qui divisent p,
nos assertions a) et b) résultent donc de la proposition 3.1.

De plus, on vérifie facilement que si p —) mod /, alors p nest

pas totalement décomposé dans L\ on déduit donc du lemme 3.3 et de la

proposition 3.1 que l'on est dans le cas a). Enfin, si p s (-) mod /,

alors (-) ^ 0. Si (-) 1 (et donc 1 mod/) alors p se décompose
P P

dans K en le produit de deux idéaux premiers p et p. Si £ est une puis-
P-l

sance /-ième modulo p, alors £
1

est congru à 1 modulo p. Mais

p-1
M1, donc {££)

1 Mp ~1 est congru à 1 modulo p. Il en résulte que

P- 1

l 1

est aussi congru à 1 modulo p. Par conjugaison, on en déduit que
p-1 P"1

l r est congru à 1 modulo p, donc £
1

est congru à 1 modulo p, donc
p-i

est divisible par p. Réciproquement, si p divise i, alors £
1

~T~
P-l

est congru à ap_i/2 modulo p. En conséquence, (£0
1 Mp_1 est

~~r

congru à (ap-il2)2 modulo p. Mais M"'1 est congru à 1 modulo p,
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donc ßp-i/2 est une puissance /-ième modulo p et donc £, qui est
~T~

congru à ap-±/2 modulo p, est une puissance /-ième modulo p. On
i

p J

conclut en remarquant que, s'il existe un k divisant -y- tel que p divise

bk, alors p divise bp_1. Pour terminer notre démonstration il ne reste
~T~

plus que le cas (-) — 1 et p -1 mod /. Dans ce cas, il y a un
P

seul idéal premier de K au-dessus de p, notons le p. Si Ç est une
p+i

puissance /-ième modulo p, alors £
1

est congru à un rationnel
modulo p ; mais yf~d n'est pas congrue à un rationnel modulo p, donc p

divise b Réciproquement, si p divise bp+l9 alors £
1

est congru

i)
à un rationnel modulo p, donc £ est congru à 1 modulo p ce

qui implique que £ est une puissance /-ième modulo p. Enfin, on
conclut comme précédemment en remarquant que, si il existe un k

p +1
divisant —tel que p divise bk, alors p divise b 1

4) Applications

4.1. Corps tchébychéviens non ramifiés

Nous allons étudier les corps tchébychéviens dont la clôture galoisienne

N est non ramifiée sur L. L'existence de tels corps implique la divisibilité

par / du nombre de classes du corps L ; nous reviendrons sur cet aspect aux

paragraphes 4.2 et 4.3. On a le théorème suivant:

Théorème 4.1.1. Soit Ç - (a+b^J~d) un entier du corps K dont

la norme est la puissance /-ième d'un entier rationnel impair M.. Si les trois
conditions suivantes sont vérifiées : 1) le polynôme Pt (X; M) — a n'a pas
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racines rationnelles ; 2) l2 divise le produit 3)

1 ou 2, alors % définit un corps tchébychévien dont la clôture

sienne Nest non ramifiée sur L.Réciproquement, si T est un corps tcheby-

chévien dont la clôture galoisienne est non ramifiée sur L, alors il existe un

entier quadratique Ç i (a +b/d) de norme M1 avec M impair qui

définit T et qui vérifie les conditions \), 2) et 3) énoncées ci-dessus.

Démonstration. Supposons 1), 2) et 3) vérifiées. Le lemme 1.1.2 et la

condition 1) montrent que ç n'est pas une puissance /-ième dans K. donc que ç

définit un corps tchébychévien T. Les conditions 2) et 3) montrent que /

divise b mais ne divise pas a; en conséquence / ne divise pas et donc

l'idéal engendré par £ est premier à /. L'entier quadratique £ vérifie donc la

condition imposée au début de la partie 2) de ce travail et nous pouvons

employer les résultats de cette partie. La condition 3) signifie que £ n'est

divisible par aucun nombre rationnel différent de + 1, donc la proposition

2.2.6 montre que seuls les idéaux premiers de L qui divisent / peuvent se

ramifier dans la clôture galoisienne N de T. Le lemme 2.1.1 et la proposition

2.2.1 montrent que £ est /-primaire, ce qui implique que les idéaux

premiers de L au-dessus de / ne sont pas ramifiés dans Enfin, l'extension

NIL étant de degré impair, les places à l'infini de L ne peuvent pas se

ramifier dans N, donc N/L est non ramifiée. Réciproquement, soit T un

corps tchébychévien dont la clôture galoisienne N est non ramifiée sur L.

Soit tj
1 (oc+ß^/j) un entier quadratique définissant T; comme on l'a

vu au début de la partie 2) de ce travail, on peut supposer que l'idéal principal

t])n'estdivisible par la puissance /-ième d'aucun idéal premier de K
qui divise /. L'extension N/L étant non ramifiée, l'idéal principal (q) engendré

par t] dans K est la puissance /-ième d'un idéal, donc q et l sont premiers

entre eux et qest /-primaire; de plus, quitte à multiplier q par une puissance

i-ième, on peut supposer que q est premier à 2. En vertu du lemme 2.1.1

et de la proposition 2.2.1 on peut, en remplaçant éventuellement q par une
de ses puissances premières à / (ce qui, d'après la proposition 1.2.5, ne

change pas le corps tchébychévien associé) supposer que /2 divise ßd.

Ecrivons alors q c1cl2£,oùcxetc2sontdes entiers rationnels, ou cy est

sans puissance /-ième et où £ ^ {a + b^jd) est un entier de K qui n'est

divisible par aucun entier rationnel différent de + 1. La norme de q étant
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une puissance /-ième, on peut, en remplaçant éventuellement rj par son
carré (ce qui ne change pas le corps tchébychévien associé) supposer que les
nombres premiers qui divisent c1 sont décomposés dans le corps K. La
proposition 2.2.6 montre qu'aucun nombre premier différent de / ne divise c± ;

comme de plus / et rj sont premiers entre eux, / ne divise pas c1 et donc
c i 1. L'entier quadratique { définit donc le corps tchébychévien T.
D'autre part /2 divisant ßd divise aussi bd puisque / ne divise pas c1c2.
Enfin, £ définissant le corps tchébychévien L, il n'est pas une puissance
/-ième dans K et le lemme 1.1.2 montre que Px (X; M) - a n'a pas de
racines rationnelles. L'élément Ç répond donc à notre question.

4.2. Rappelons le lemme suivant:

Lemme 4.2.1. Soit L un corps quadratique et M une 3-extension
abélienne non ramifiée de L, alors M est galoisienne sur Q.

Démonstration. Soit H le groupe de Galois de la 3-extension abélienne
maximale non ramifiée de L. Cette extension maximale étant galoisienne
sur Q, le groupe Gal (L/Q) agit par conjugaison sur H. Soit H1 le sous-

groupe de H formé des éléments invariant par Gai (L/Q) et H2 celui formé
des éléments qui, par l'action de l'élément non trivial de Gai (L/Q), se

transforment en leur inverse. Les sous-groupes Hl et H2 sont stables par
Gai (L/Q) et leur produit direct est isomorphe à H. En conséquence, le

corps des invariants M2 de H2 est galoisien sur Q et Gai (L/Q) agit
trivialement sur Gai (M2/L). Les ordres de Gai (M2/L) et de Gai (L/Q) étant
premier entre eux, le corps M2 est le composé de L et d'une 3-extension
non ramifiée de Q. Le corps Q n'ayant pas d'extension non ramifiée, on
a M2 L i.e H2 H et donc tous les sous-groupes de H sont stables

par l'action de Gai (L/Q) ce qui implique l'assertion de notre lemme.
Il résulte de ce lemme que toute extension abélienne non ramifiée de

degré 3 d'un corps quadratique (nécessairement différent de Q (v^3))
est la clôture galoisienne d'un corps tchébychévien: en effet, ce lemme montre
qu'une telle extension est galoisienne sur Q; elle n'est pas abélienne sur
Q puisque Q ne possède pas d'extension non ramifiée, c'est donc la clôture
galoisienne d'un corps cubique non galoisien; ce corps n'est pas pur puisque
le corps quadratique K contenu dans sa clôture galoisienne n'est pas le

corps Q(>/-3), donc (remarque 1.1.6) c'est un corps tchébychévien. On

peut maintenant donner une caractérisation des corps quadratiques dont
le nombre de classes est divisible par 3; on a:
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Théorème 4.2.2. Unecondition nécessaire et suffisante pour que le

nombre de classes d'un corps quadratique soit divisible par 3 est que ce corps

soit de la forme Q(V~3(x2-4z3)) oùsont deux entiers rationnels

non nuls, tels que les p.g.c.d. (z, 2/) et (x, z) sont égaux à 1, que x2 -
est divisible par 27 et n'est pas un carré et que le polynôme X3 -3zX-

'a pas de racines rationnelles.

Démonstration. Soit Luncorps quadratique. Le nombre de classe de

L est divisible par 3 si et seulement si L possède des extensions abéliennes

non ramifiées de degré 3. Comme on l'a remarque ci-dessus, une telle

extension est la clôture galoisienne d'un corps tchébychévien. Supposons

donc que L possède une telle extension et notons T le corps tchébychévien

dont elle est la clôture galoisienne. Désignons par d l'entier sans carré tel

que L Q (J - 3d) dexiste puisque # Q (v^3)). Le théorème 4.1.1.

affirme l'existence d'un entier £ de Q (Jd) dont la norme est le cube d'un

rationnel impair M,quidéfinit T et qui vérifie les conditions 1), 2) et 3)

de cette proposition. Ecrivons £ - (a+etposons x et M\

on vérifie facilement que L —Q (%J — 3 (x2 — 4z3) et que x et z vérifient

toutes les conditions de notre proposition, Réciproquement, soient x et z

vérifiant toutes les conditions de notre proposition; nous posons x2 - 4z3

b2davec d sans carré. L'entier quadratique £ - (x + b^fd) vérifie

les conditions 1), 2) et 3) du théorème 4.1.1 donc la clôture galoisienne du

corps tchébychévien associé à £ est une extension abélienne non ramifiée

de degré 3 de Q (J -3d) i.e de g (^/-3(x2-4z3) ; le nombre de

classe de ce corps quadratique est donc divisible par 3 ce qui achève la

démonstration.

4.3. Le cas 3

2 ji
On rappelle que œ est cos — Le corps L est le corps Q ([co, yfd (co2 — 1)) ;

c'est une extension quadratique du sous-corps réel maximal du corps des

racines /-ième de l'unité. On n'a pas dans ce cas de résultat aussi précis

que celui du théorème 4.2.2, mais le théorème 4.1.1 permet de démontrer
k résultat suivant:
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Théorème 4.3.1. Soient x et z deux entiers rationnels non nuls tels
que (z, 21) (x, z) 1, que x2 - 4zl est divisible par l3 et n'est pas
un carré et que le polynôme Pt (X; z) — x n'a pas de racines rationnelles,
alors l divise le nombre de classe du corps Q (co, y/(x2 — 4z1) (co2 — 1)

Démonstration. Analogue à la partie correspondante (dans le cas
/ 3) du théorème 4.2.2.

Terminons ce travail par une illustration numérique. Prenons 1=5;

le corps L est alors Q Çj —LbZL) d^j et est 125. — Soit un

nombre premier congru à 1 modulo 5. — Nous prenons z + p. — Dans
les deux cas z est un carré modulo 5, donc aussi modulo 125, et 4z5 est un
carré modulo 125. — Choisissons alors x tel que, d'une part, x2 soit congru
à 4z5 modulo 125 et que, d'autre part, x ne soit pas une puissance 5-ième
modulo p (de tels x existent puisque 125 et p sont premiers entre eux). —
Le polynôme P5 (X; z) est X5 — 5zX3 + 5z2X; en réduisant modulo p,
on voit que l'équation P5 (X; z) — x n'a pas de racines rationnelles. —
En conséquence, pour un tel x et un tel z, le nombre de classes du corps

Q Çj (—^ ^
^z5)^ est divisible par 5 dès que x2 - 4z5

n'est pas un carré.
En se servant, comme le fait Honda [3], d'un théorème de Mordell (ou

de celui de Thue [9], chap. 28, qui est suffisant), on peut voir qu'il y a une
infinité de corps réels et une infinité de corps imaginaires du type

(—^ +
^ ^2 _ 4z5^ j dôïit le nombre de classes est divisible

par 5. — En effet il suffit pour le voir de remarquer que, si l'on pose
x2 - 4z5 y2ô avec ô sans carré, alors, en faisant varier x et z
assujettis aux conditions décrites ci-dessus, on obtient une infinité de ô

positifs et une infinité de ô négatifs (ô positif correspond à un corps

imaginaire et ô négatif à un corps réel puisque —^ + "V^
est

2

négatif). — En fait on fixe un x qui n'est pas une puissance 5-ième et

on montre que l'on obtient déjà l'infinité de ô cherchée avec cette
valeur de x. — Désignons par Ç une racine 25-ième de l'unité et consi-
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dérons l'extension MQ (£, 5/4 — C'est une extension galoisienne

de degré 100 sur Q; l'extension M/Q (Q est de degré 5 et l'ensemble

des 4 automorphismes non triviaux de M/Q (Q est une classe de conjugaison

de Gai (M/Q) ; notons la C. — D'après le théorème de

Tchebotarev, il existe une infinité de nombres premiers dont le Frobenius

est cette classe de conjugaison. — Soit p un tel nombre premier ; il est

totalement décomposé dans Q (0 donc congru à 1 modulo 25, et il n'est pas
totalement décomposé dans M donc x n'est pas une puissance 5-ième

modulo p. — En conséquence, si z ± p, le nombre de classes du corps

Q^J ^ + V 5
^ (x2 —425)^ est divisible par 5 dès que x2 - 4z5

est divisible par 125. — Prenons x 2 et z p alors x2 — 4z5 4

- 4p5 y2ô est divisible par 125. — Pour un <5 fixé l'équation 4-4p5
y2ô n'a, d'après le théorème de Thue, qu'un nombre fini de

solutions; une infinité de p étant permis, on obtient donc l'infinité de ô

cherchée et ces <5 sont clairement négatifs. — De même, en prenant
x 11 et z — p, on obtient l'infinité de ö positifs cherchée. —

Remarque. On peut montrer qu'en fait, dans le cas 1=5, les conditions

nécessaires à la divisibilité par 5 du nombre de classes de

^ + (x2 — 4z5) énoncées dans le théorème 4.3.1. sont

suffisantes. —
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