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The equivalence of Characterizations C2 and C8 is proved in [Wag-

reich 2, p. 66; Saito 2, Theorem 1.9]. In fact, the zero loci of the germs Eg,

E7 and ]58 have minimal resolution as above with E> = —3, —2 and —1
respectively. ' ' |

Characterization C9. The germ f~'(0) is isomorphic to g~* (0),
where g is a weighted homogeneous polynomial with weights w; satisfying
wot + ...+ w, b = n/2 | ’

The equivalence of Characterizations C2 and C9 is proved in [Saito 2,
Satz 2.11]. In fact, the germs in Table 2b have the following weights:

GERM WEIGHTS
Py (3,3,3)
X 4,4
Jio (3, 6)

APPENDIX I

THE MONODROMY GROUPS OF THE MINIMAL HYPERBOLIC GERMS

PROPOSITION. The monodromy groups of the germs Py, X o, and Jiy
have exponential growth.

In this appendix, we present an (unpublished) proof of this proposition
due to E. Looijenga. In fact, we will show that these groups have PSL (2, Z)
as subquotient (quotieut of a subgroup). We let 0 (V) denote the orthogonal
group of a Z- or R-module ¥ equipped with a bilinear form.

Suppose G is a polyhedral graph whose edges are weighed by non-zero
integers. By convention, the weight 1 is omitted. Let L; denote the free
Z-module generated by the vertices v, ..., v, of G. Define a symmetric
bilinear form (,) on Lg by setting (v;,v;) = —2, and (v;, v;) = 0 if there
is no edge from v; to v;, otherwise equal to the weight on this edge. Con-
versely, given a symmetric integral bilinear form (,) on a free module L
with basis a4, ..., @, with the property that (a;, «;) = —2 for all i, one
associates a graph to it in the obvious way.




Il
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For a € Lg, let s, (reflection in «) be the isometry of Lg defined by
) (o, B) .
(o, 00)

for BeL;. The reflection group # (G) of the graph G is defined to be the
subgroup of 0 (L) generated by s,,, ..., S, .

s.(f) = f —

Example 1. Consider a reduced irreducible root systeni_in a vector
space V. Let ay, ..., o, be a collection of simple roots, let L be the free
Z-module spanned by the «;, and let (,) be the negative of an invariant
bilinear form [Serre, Chapter 5]. If (a;, «;) = —2 for all 7, then the cor-
responding graph must be of type 4,, D,, Es, E, or Eg. The reflection group

of these graphs equals the Weyl group, the group generated by reflections §

in all the roots [Serre, p. V-16]. Furthermore, the reflection group together
with the generators s,, ..., s, forms a Coxeter system [Bourbaki, p. 92].
(A Coxeter system is a group G, a collection of elements g4, ..., g, and a
symmetric integral » X n matrix {m;;} with m; = 1 and 2 <m;; < ©
for i # j, with the property that G is isomorphic to the free group with
generators ¢, ..., g, and relations (g;, g;)" % = 1, for all 7, j.)

Example 2. The monodromy group of a germ f is the reflection group
of a quadratic form diagram for f (Sections 13 and 14). When this diagram
is a tree (which is only possible for the simple germs), its reflection group
together with the generators T'y, ..., T, forms a Coxeter system. In general,
this reflection group is not a Coxeter system [A’Campo 2, II, p. 403].

Lemma [Gabrielov 3]. If the graph G’ is a subgraph of the graph G,
then Z (G’) is a subquotient of Z (G).

Proof. Let ay, ..., 0., be a basis of Lg corresponding to the vertices |
of ¢, let a4, ..., &, be the corresponding elements in Ly, and extend this to
a basis oy, ..., Uy Xy 15 ---» &y Of L corresponding to the vertices of G. The

map o; — «; is an isometric embedding of Lg in Lg. Let £’ be the sub-

group of # (G) generated by s,,, ..., 5, ; it has a presentation with these
generators and certain relations. Any relation among these s,. holds also
for s,, | Lg: = $,;. Thus ' maps onto Z (G). |

Fact. If a subquotlent of a group G has exponential growth then SO
does G

Proof of Proposition. 1. A quadratic form diagram for the germs

Py, X4, and J,, is given in column 5 of Table 2. These graphs contain a




subgraph of -the form T3 3, iin T2 45 and T2 3,7 respectrvely, where T
1sthegraph ; nr S

. 5 o am —— CECERER K » s Y—— R W
o—o ... 0—© e ... © ®
% i

Hence it sufﬁces to show that the reﬂectron groups of these graphs have
exponential growth. - ~ S TR Y
Let I' be the graph

with vertices corresponding to basis elements «, o, f in L, as indicated.
We claim that # (T,,,,) has Z (I') as subquotient, for (p, g, r) = (3,3, 4),
2,4, 5), and (2, 3, 7). Consider . (for example) T3 3.4, With vertices cor-
responding to basis elements o; € LT3 3,4.as indicated:

*—0o—0—0—0
X
®a
P

This contains the graph E,. Let

~

o = oy + 20y + 303 + 2004 + 45 + 206 € L3 3,4
be the largest root of E6‘ [Bourbaki p. 165]. Since all the roots of E6‘are

~  ~

the same length, («, oc) —2. The lattice spanned by « o, and f has

diagram I'. The reﬂect1ons Su and Sp are in 2 (T35 4) We clalm that s; is

inZ (T3, 3.4)aswell: The restriction Sy | LE6 is in Z (Ey), smce E6 s a root '

system. Hence s3 |LE6 = (Sa;yy © . 08y iomy). |LE6 for some 1 (z(l)
-y 1 (m) <6. ‘
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Also, s5 and Sai(1y © Sa;(my ar¢ both the identity when restricted |
to the orthogonal complement of Lg¢ ® R in Lr;;4 ® R. Thus s3
T Sayy O wr O Syymys and £ (T, 5 4) contains s3. A proof similar to that
of the lemma then shows that R (T3 3 4) has subquotient R (T).

3. Next we show that % (I') has subquotlent PSL (2,Z). This uses
[E. Artin, Chapter V] heavily.

Let V' be the 3-dimensional real vector space Ly @ R. The bilinear

form (,) of I extends to V. This form is indefinite since ;c + o has length 0.
Let ’ |

0"(V) = {fe0(¥): det f = 1 and spinor norm of f equal to 1 R*?.
Since V is indefinite, it is known [E. Artin, p. 200] that

(1) 0’ (V) =-PSL(2,R).

Since PSL (2, R) contains PSL (2,Z) as a subgroup, the idea is to finc |§
elements of # (I') = 0 (I') which are in 0’ (V) and map to generators of
PSL (2, Z). The standard generators of PSL (2, Z) are |

s=(; o) T-(; )

with relations S* = (ST)® = 1. By inspection, it is found that the elements
53 sp and sp5, of 0 (L) satisfy (s755)% = (s45,)° = 1, and have determinant
equal to 1 and spinor norm equal to IR*2. Therefore we would like to
choose the isomorphism (1) such that Sy S maps to S, and sy, =
(s755) ' (s45,) maps to S~ (ST) = .

The isomorphism (1) is done in two steps. First, Iet D, (V) be the
elements of the Clifford algebra of ¥ of norm 1; then [E.-Artin, p. 199]

©) - DM 1} E0 (). o
We do not need to know exactly what this isomorphism-is, but only that
V Ow— s;,sW .

for elements v, w in V regarded as a suhspace of the Clifford algebra,
~and v o w their product. Hence under the above isomorphisms

~ ~

(3) 5oc Of+>5555, _2.05 O o> sys, .
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Secondlyv [E. Artin, p. 199],
4 Do (V)/{+1} = PSL(2,R).

We examine this more closely. Let

A = J2@+a+B2), A, =alJ2, As=B[/2.

Then A, A,, A5 is an orthogonal basis of ¥, and the matrix of (,) with
respect to this basis is the diagonal matrix (+1, —1, —1}. Let C )
be the subspace of the Clifford algebra of ¥ spanned by the elements of
even grading; C* (V) is generated by 1, iy, i,, i3, where i; = 4, 0 43,
i,=A; 0A,, and i; = A; 0 A,, and has multiplication table as in
[E. Artin, top of p. 200] with a = —1. The map

C* (V) - M(2,R)
(where M (2, R) is the algebra of all 2 x 2 matrices over R) defined by

( 10 | 0 -1
1|—>\ 0 1), lll—>( i 0)
(=1 0 | 0 -1
lz_’( 0 1)’ l3_’<—1 0)

is an isomorphism. (This is slightly different from the isomorphism of
[E. Artin, p. 200].), and the restriction of this map to D, (V) gives the iso-
morphism (4). Furthermore,
(5) I;Oﬁ—ii——>S lgorx—l—l(i +iy)—=>T

5 1 s 5 5 1 3
under this isomorphism. Combining isomorphisms (2) and (4) gives iso-
morphism (1), and (3) and (5) show that

Sy SgH> S, sy s,—~T

under isomorphism (1). Thus £ (I') maps onto PSL (2, Z), and hence has
PSL (2, Z) as subquotient.

4. Finally, PSL (2, Z) is isomorphic to the free product (Z/2Z) % (Z/3Z)
[Serre, ch. 7; Lehner, p. 59], which has exponential growth.
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TABLE 3

SIMPLIFICATION TABLE

?6""?7‘—?8
}
AN

1"

Table 3 lists some (but not all) of the simplifications that occur among
the germs of Table 2.
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