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14. VANISHING CYCLES

Let fbe a germin &, and let f be a nearby Morse function with u distinct

crmcal values #,, ..., ¢, in the disk D} of radius § about 0.in C. A path o;in

- {ty, ..., t,} from o to ¢; determines (up. to sign) a vanishing cycle ¢,
in H (F). The self-intersection (5,, 0;)1s 2 (— 1)"/ 2 or 0 according as n is
even or odd. Choose paths a, .. , 10 D; — {t;...., t,} fromédtoty,.., 1,
respectively, such that the union of the images of the paths is a deformation
retract of D> ; then the corresponding vanishing cycles 64, ..., d,, are a basis
of H, (F) [Brieskorn 4, Appendix]. The basis d,, ..., §,, is called an. ordered
(or distinguished) basis of vanishing cycles if t,, ..., t, are ordered so that the
loop going once counter-clockwise around the boundary of Dj is homo-
topic in my (D — {t, ..., 1,}, §) to the product B, ... * B,, where B, is
the loop going out «; almost to ¢;, around ¢; counter-clockwise, and back -
along o;. References for this are [Gabrielov 1, Lamotke, Durfee 1].

Choose an ordered basis of vanishing cycles 6y, ..., d, for the inter-
section pairing (, ) of ' (zg, «ey 2,) + Zprq + ... + 22, Wwherem = 2 (mod 4)
The quadratic form diagram of f with respect to the basis d, ..., d, has
vertices vy, ..., v, and edges from v; to v; if (d;, §;) # 0, weighted by (5,, ;)
if (9;, 6;) # 1. This diagram is connected [Lazzeri; Gabrielov 2]. It deter-
mines all the topological information in the singularity if » # 2 [Durfee 1].
There are a number of methods of computing these diagrams [A’Campo 21 ;
Gabrielov 3; Gusein-Zade]. The quadratic form diagrams of the germs of
Table 2 are listed in column 5. Lemma 12.1 can be strengthened to show
that if f topologically degenerates to g, then some quadratic form diagram
for fis a subdiagram of some quadratic form diagram for g [Siersma,
p. 82].

Characterization B7. There is an ordered basis of vanishing cycles
for f'such that the quadratic form diagram is a (weighted) tree.

It is shown in [A’Campo 2II] that Characterizations Bl and B7 are
equivalent. In fact, the quadratic form diagrams for the germs in Table 2a

are the same as the graph of their minimal resolutions (column 3 of
Table 1).

5. THE MONODROMY GROUP

Let fbe a germ in &, and as above choose an ordered basis 015 .ry 0, Of
vanishing cycles for H,, (F), where F is the Milnor fiber of | |

f(ZOa'“a Zn) + Zr%+1 + ..+ Z?n
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with m = 2 (mod 4). The Picard-Lefshetz automorphisms T ;of H, (F)
fori = 1, ..., u are defined by | '

TI(X) = X + (5i,X) (Si"

Another way of writing T is . :
(5ia x.)
(6, 67)

which shows that T is a reflection in §; [Lamotke].

- The monodromy group of fis the subgroup of the automorphism group
of H, (F) generated by T4, ..., T,. This group depends only on £, since it
may also be defined as a representation of the braid group of f, which is
the fundamental group of the complement of the bifurcation diagram in |
the base space of the versal unfolding of f [Arnold 3, §2.8]. (Here is a direct
proof that the monodromy group of f is independent of the choice of
nearby Morse function f and paths aq, ..., o,: The set Dj — {ti,...t,} is
the base space of a fiber bundle with fiber F, so Ty (D§ ~ {tq, ..., Luts 5)
acts on H, (F). The image of f; in Aut H,, (F) is T;; since Bis- By
generate 7,, the monodromy group is the image of n, in Aut H,, (F ). Thus
the monodromy group is independent of the choice of Oy weny &, It s
independent of the choice of f since any two nearby Morse functions with U
distinct critical values can be joined by a family of such functions.)

T;(x) =x— 2

d;

Characterization BS. The monodromy group of £ is finite.

Characterization B5 implies Characterization B8 since the auto-
morphism group of any positive definite integral lattice is finite. In fact,
the monodromy groups are precisely the Coxeter groups of the corre-
sponding quadratic form diagram. Conversely, [Gabrielov 3] shows that |
if a germ f topologically degenerates to a germ g, then the monodromy
group of f'is a quotient of a subgroup of the monodromy gréup of g. Since
the monodromy groups of the germs in Table 2b are infinite [Gabrielov 1],
Proposition 10.1 shows that Characterization BS implies Characteriz- .
ation BI. :

16. WEIGHTED HOMOGENEOUS POLYNOMIALS

A polynomial g (z,, ..., z,) is weighted homogeneous if there are positive
rational numbers wo, ..., w, (the weights) such that g (z, ..., z,) may be
written as a sum of monomials zy ...z with io/w, + ... + i,/w, = 1
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