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12. THE QUADRATIC FORM

Let f(zg, .o ,,) be a germ with f (0) = ( and an 1solated crltlcal point
at 0 (that is, a germ in ). There is an ¢ > 0 such that /'~ 1 (0) intersects all
spheres of radius & about 0 transversally for 0 < ¢ <e. For suitably small
6>0, f 1 (5) intersects the closed disk DZ"” of radius & transversally,’
forall[5 | <3. Let |

F=f"1 (5) an"Jr?

be the Milnor fiber of f [Milnor 1]. The set F is a smooth real 2n-manifold
with boundary whose diffeomorphism type is independent of the choice
of ¢ and &. Furthermore, F is (n— 1)-connected, and the Milnor number .
of §7 is the rank of H, (F). The Milnor number is zero if and only if the
germ f has a regular point at 0 [Milnor 1, Corollary 7.3]. The intersection
pairing (,) of F is the integral bilinear form H, (F) x H, (F) — Z defined
by sending (x, y) to (x"u ) [F], where x" and y’" in H" (F, 0F) are Lefschetz
duals to x and y, and [F] in H,, (F, 0F) is the orientation class of F given
by the underlying complex structure. The intersection pairing is symmetric
if n is even, and skew symmetric if n is odd. For example, the germ
f(zgs oor 2,) = 25 + ... + z7 has H, (F) a free cyclic group with generator e,
and (e, e) = 2 (—1)"? or 0 according as # is even or odd. There are many
methods of computing the intersection pairing in special cases.

By a tensor product theorem [Gabrielov 1; Sakamoto], the Milnor
numbers of f (zy, ..., z,) and f(zq, ..., Z,) + 2241 + ... + z2 are equal. The
quadratic form of f(z,, ..., z,) is defined to be the intersection pairing of
the germ f(zg, - Z) + Zp4 1 + ... + 22, where m = 2 (mod 4). This is
independent of ‘the choice of m. For example, if n = 0 (mod 4) then the
quadratic form of f'is the negative of its intersection pairing; all this follows
from the tensor product theorem. See also [Kauffmann and Neumann].

A germ f topologically degenerates to a germ g if there is an # > 0 and
a family A, of germs for {te C:|t| < 2n} with h, ~ f, hy ~ g, and h, of
constant Milnor number for ¢ % 0. Compare [L& and Ramanujam]. Clearly
right degeneracy implies topological degeneracy.

Lemma 12.1 [Tjurina 1, Theorem 1]. If f topologically degenerates
to g, then there is an injection of H, (F,) into H, (F,) (where F, is the
Milnor fiber of £, and F, is the Milnor fiber of g), and this injection preserves
the intersection pairing. In particular, if g topologically degenerates to f as
well, then the intersection pairings of f and g are isomorphic.
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Characterization B5. The quadratic form of fis negative definite.

The equivalence of Characterizations Bl and B5 is proved in [Tjurina 1].
By explicit computation the quadratic forms of the germs in Table 2a are
shown to be negative definite, and those of Table 2b are shown to be
negative semi-definite. (In fact, the quadratic form of a germ in Table 2a
is isomorphic to the intersection pairing of its minimal resolution, and the

quadratic form of a germ of type E, in Table 2b is isomorphic to the quad-
ratic form of E, plus a two-dimensional zero form.) The result then follows
- from Proposition 10.1 and Lemma 12.1. When n = 2, the Milnor fiber Fis
in fact diffeomorphic to the minimal resolution M of £~1(0), since the
singularity of =1 (0) is an absolutely isolated double point [Brieskorn 1,
Theorem 4; Tjurina 1, Lemma 1]. ' |

When n = 2, the equivalence of Characterizations A2 and B5 follows
from the following result [Durfee 2, Proposition 3.1].

THEOREM 12.2. Twice the geometric genus p of f _f (0) equals the
number of positive plus the number of zero diagonal elements in a diagonal-
ization of the intersection pairing over the real numbers.

The classification of germs according to signature of the quadratic
form has been extended in [Arnold 3]; see also [Durfee 2, Proposition 3.3].

13. NEARBY MORSE FUNCTIONS

A deformation of a germ fe F is a germ g: C"*! x C - C with
g (z,0) = f(2). Choose ¢ and ¢ for f as in §11. Then choose # > 0 such
that for all | 7| < # and | 6"| <6, the set {ze C"*1:g (2, 1) = '} inter-
sects S2n+1 transversally and the critical values of g (z, t) for fixed ¢ are
less than é in absolute value. A germ f is a nearby Morse function to fif f
has only non-degenerate critical points in D>"*2 and there is a deformation -
g and a #, with | #, | < 7 such that f (2) = g (z,2,).

Characterization B6. There is a nearby Morse function to Jf with one
or two critical values. | '

In fact, the nearby Morse function has one critical value if and only
if fis right equivalent to' 4,, since the quadratic form diagram is connected
(§14). This surprising characterization is in [A’Campo 2II], where it is
shown that Characterization Bl implies B6, and B6 implies B7 below.




	12. The quadratic form

