Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: FIFTEEN CHARACTERIZATIONS OF RATIONAL DOUBLE POINTS
AND SIMPLE CRITICAL POINTS

Autor: Durfee, Alan H.

Kapitel: B. NINE CHARACTERIZATIONS OF SIMPLE CRITICAL POINTS

DOI: https://doi.org/10.5169/seals-50375

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-50375
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 142 —
Characterization AT'.  lim r~? vol (X (r)) is finite.

r—-0

Let w = dx A dy A dz, and note that w A @ is 8/i times the volume
form of C?. Characterizations A7 and A7 are equivalent since

o .
lim  vol (X (1)) = lim — | @ A @

r—0 ) r->0 %
o N
=:}‘1_I)I;W (J‘ (Dt/\wt)dt/\dt,
but since Ay Ve
f (%) dt A dt = vol(4(r)) = 27”2',
4 (r)

the above limit equals

\-

B. NINE CHARACTERIZATIONS OF SIMPLE CRITICAL POINTS

We switch our attention from the analytic set defined by the zero locus
of an analytic function f (x, y, z) to the function itself and the nature of its
critical point. We also generalize to functions Sz, ...s z,) of an arbitrary
number of variables. The characterizations in the following theorem will
start in Section 9.

THEOREM B.. Let f(zy, ..., z,) With n >1 be the germ at the origin 0 | |
of a complex analytic fuﬁction, and suppose further that f(0) = 0 and that 0
is an isolated critical point of f. Then Characterizations Bl through B9 are
- equivalent. ‘

8. THE CLASSIFICATION OF RIGHT EQUIVALENCE CLASSES

Let @ be the set of germs f at the origin 0 of domplex analytic functions
on C***, (In other words, @ is just the ring C {z,, ..., z,} of convergent
power series.) The ring @ is local with maximal ideal ‘

m = {fe0:f(0) = 0}.




Let

of of

be the ideal in @ generated by the partial derivatives of f.

" Lemma 8.1. A germ fin m has an isolated critical point at 0 if and only
if there is a k such that m* < Af < m.

Proof. The germ f has a critical point at 0 if and only if fe m?, or
equivalently, Af < m. If this critical point is isolated, then the origin is an
isolated zero of the functions 9f/0z,, ..., 0f/0z,. This is equivalent to saying
that the set of common zeros of all the functions in the ideal 4f equals the
set of common zeros of the ideal m. By the Nullstellensatz, there exist
integers /o, ..., [, such that zﬁi e Af. Setting k = (n+1) max {/o, ..., /,}
gives m* < Af. Conversely, if m* = Af then the origin is an isolated critical
point. This proves the lemma. '

Let & be the set of all germs in @ vanishing at the origin and with an
1solated critical point there. (This is the set of finitely-determined germs.)
The Milnor number of a germ fe Z is. |

For a comprehensive discussion of p, see [Orlik 2]. There are many ways
to compute this number, aside from the above formula [Milnor 1, §§7, 10;
A’Campo 1; Laufer 6]. The (right) codimension of fis p — 1.

Two germs fand g in O are right equivalent (written f ~ g) if there is a
germ h of a complex analytic automorphism of C**! fixing 0 with f o &
= g. The germs f and g are contact equivalent if there is an 4 as above such
that the ideal generated by f o /4 in 0 is equal to the ideal generated by g.
This is equivalent to saying that the analytic sets £~ (0) and g~ (0) are
isomorphic. Note that right-equivalent germs are contact equivalent.

Mather, Arnold, and others have classified germs of low Milnor number
under right equivalence. The implicit function theorem .shows, for example,
that if £ (0) = 0 but the derivative of f does not vanish at 0, then f1s right
equivalent to the projection (zy, ..., z,) = zo. If £(0) = 0 and f has a non-
degenerate critical point at 0, then f(z,, ..., z,) ~ zo + ...+ 22 by the
Morse lemma.

Recall that the k-jet of a germ fin @ is its power series expansion up to
degree k. A germ fe O is k-determined if any germ with the same k-jet
4s f is right equivalent to f. In particular, f is right equivalent to its own
w-jet. A germ is finitely determined if it is k-determined for some k < oo,

S ———
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The fundamental lemmas used in the classification are és follows:
Lemma 8.2. If mt** < m? Af then fis k-determined.

For the p‘rOOf, see [Arnold 1, Lemma 3.2; Zeeman, Theorem 2.9;
Siersma, p. 8]. Note that m*~! < Af implies that m*** < m? Af. The
corank of f is defined as n + 1 minus the rank of the Hessian matrix
{(0*f]0z, 0z;) (0)}. The proof of part (a) of the following lemma may
be found i in [Arnold 1, Lemma 4.1; Slersma Lemma 3.2].

Splitting Lemma 8.3. (a) Let f(zgy ey 2,) € F Dbe of corank r + 1.
Then there is a g (z, ..., z,) € m> such that

f(zgy ey 2,) ~ g(z@, s Zp) A 22 e F 22
(b) Let g (zg, ..., 2z,) and g’ (zg, ..., 2,) € F N m>. If
9(Zos s 2,) + Zieg + oo + z,f ~ g (Zos s 2,) + Zrgq + oo + 24
then |
g (2Zgs ey 2Z,) ~ g’(zp, vees Zp)

The classification proceeds by low corank and low Milnor number.
A germ of corank 0 is right equivalent to z2 + ... + z2, a germ of corank 1
and Milnor number k > 1 is right equivalent to zE*! + 22 + ... + z2,
and so forth. The proofs are not hard [Arnold 1, Zeeman, Siersmal.
Table 2, for instance, includes all right-equivalence classes of germs with
Milnor number g <9.

9. CHARACTERIZATIONS UNDER RIGHT AND CONTACT EQUIVALENCE |

Characterization BI. The germ fis right equivalent to one of the germs |

in Table 2a.

*

Characterization B2. The germ f is contact equlvalent to one of the
germs in Table 2a. |

When n = 2, Characterization B2 is the same as Charactenzatlon Al.
Clearly Characterization Bl implies Characterization B2. Since all “the
germs in Table 2a are weighted homogeneous (§16), the converse follows
- from the next lemma. | |

Lemma 9.1. Let g be a We1ghted homogeneous polynom1a1 and
suppose that a germ f'e & is contact equivalent to g. Then f is right equlv-
alent to g.
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Proof. To say that f is contact equivalent to g means that there is a
germ of an analytic isomorphism 4: (C***,0) - (C***, 0) and a function

u: C**1 - C with 4 (0) # 0 such that f = u-(g o k). Let A= (B°, .., A")

be the components of 4, and suppose that g is weighted homogeneous with
weights (wy, ..., w,). Then,

F(Zos eves Zg) = U (Zgs eees Z) * G (8% (205 evvs Zp) 5 vvs B (205 o205 Z))
= g((u(ZO:"-a Zy )1/WO hO(ZOJ seey n)a '
(U (zoy oo Z))™™ B (20, -..s Z,)) -

Hence f'is right equivalent to g.

10. DEGENERATION

Let J, be the set of k-jets of germs in @. There is a projection of @ to
Ji, by mapping germs to their power series expansion truncated in degree k.
The ring @ becomes a topological space by letting a basis of open sets be
inverse images of open sets in J,, for all k.

The group of germs of analytic automorphisms fixing 0 acts on @, and
the orbits of this action (right-equivalence orbits) are the right-equivalence
classes. Similarly, there is a contact equivalence group which acts on 0,
and the orbits of this action ( contact-equivalence orbits) are the contact
equivalence classes [Mather, §2]. A right-equivalence orbit is always con-
tained in a contact-equivalence orblt, Lemma 9.1 says that the right-
equivalence orbit of a germ fin Table 2a or b equals its contact-equivalence
orbit.

A subset A of 0 is said to right (or contact) degenerate to a subset B
of 0 if the closure of the right (or contact) equivalence orbit of 4 contains B.
If 4 degenerates to B, then B simplifies to A (written 4 « B). Right de-
generacy is also called adjacency. For example, when n = 0, the germ z&
right degenerates to the germ zf)‘ for k < [, since the one-parameter family
tzg + (1—1¢) z} is z, when ¢ = 0, and is right-equivalent to z& when ¢ # 0.
All germs of low codimension can be arranged according to right de-
generacy in fascinating tables [Arnold 3; Siersma]. Table 3 lists some (but
not all) of the simplifications that occur. The following proposmon is a
or1n01pa1 consequence of the work on degeneration.

ProrposiTION 10.1.
(i) The germs in Table 2a right simplify only to each other.
(i) The germs in Table 2b right simplify only to the germs in Table 2a.

L’Enseignement mathém., t. XXV, fasc. 1-2. 10
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(1ii) The germs in T able ZC right szmplzfy only to the germs in Table 2b
and 2a. \

(iv) A germ in F not right equivalent to a germ in Table 2a, b or ¢ rzght
simplifies to a.germ in Table 2c. |

11. SIMPLE GERMS AND MODULI

A germ fem is said to be right (or contact) simple if there is a neigh-
borhood of fin m intersecting only finitely many right (or contact) equiv-
alence orbits. In the language of algebraic geometry, a germ f is contact
simple if and only if the versal deformation of f~* (0) contains only finitely
many isomorphism classes of analytic spaces.

The germs in Table 2a are right and contact simple by Proposition 10.1.
The germs in Table 2b are not contact simple (and hence not right simple):

E; is a family of cones over non-singular elliptic curves in CP?, E; is a

family of four lines through the origin in C?, and Eg is a family of three
parabolas [Arnold 1; Siersma]. Note that the germs of Table 2¢ form one-
dimensional families under right equivalence, but all members of the
family are contact equivalent [Laufer 4; Siersma p. 54]. Clearly if a germ g
right simplifies to f and f'is not right simple, then g is not right simple; the
same applies to contact equivalence. |

‘Characterization B3. The germ f'is right simple.

Characterization B4. The germ fis contact simple.

The equivalence of Characterizations B1 and B3 follows from Prop-
osition 10.1 and the above remarks [Arnold 1]. Characterization B3 implies
Characterization B4 by definition. Conversely, a contact simple germ f
which is not right simple right simplifies to a germ in Table 2b (by Prop- -
osition 10.1), but these are not contact simple. Hence f must be right simple. [

The classification of simple germs has recently been extended to complete
intersections [Giusti]. The modality of a germ f is defined in [Arnold 3].
A right-simple germ is zero-modal; all right equivalence classes of 1 and
2-modal germs have been listed [Arnold 2, 3, 5]. Moduli of resolutions of
two-dimensional normal singularities are studied in [Laufer 3, 4]. The follo-
‘wing result provides a connection between Characterizations A2 and B3.

TueoreM 11.1 [Randell]l. For almost all germs f(x,y,z) ( in the sense
of the Newton diagram), the geometric genus p of f 10) is less than or
equal to the modality of f.
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12. THE QUADRATIC FORM

Let f(zg, .o ,,) be a germ with f (0) = ( and an 1solated crltlcal point
at 0 (that is, a germ in ). There is an ¢ > 0 such that /'~ 1 (0) intersects all
spheres of radius & about 0 transversally for 0 < ¢ <e. For suitably small
6>0, f 1 (5) intersects the closed disk DZ"” of radius & transversally,’
forall[5 | <3. Let |

F=f"1 (5) an"Jr?

be the Milnor fiber of f [Milnor 1]. The set F is a smooth real 2n-manifold
with boundary whose diffeomorphism type is independent of the choice
of ¢ and &. Furthermore, F is (n— 1)-connected, and the Milnor number .
of §7 is the rank of H, (F). The Milnor number is zero if and only if the
germ f has a regular point at 0 [Milnor 1, Corollary 7.3]. The intersection
pairing (,) of F is the integral bilinear form H, (F) x H, (F) — Z defined
by sending (x, y) to (x"u ) [F], where x" and y’" in H" (F, 0F) are Lefschetz
duals to x and y, and [F] in H,, (F, 0F) is the orientation class of F given
by the underlying complex structure. The intersection pairing is symmetric
if n is even, and skew symmetric if n is odd. For example, the germ
f(zgs oor 2,) = 25 + ... + z7 has H, (F) a free cyclic group with generator e,
and (e, e) = 2 (—1)"? or 0 according as # is even or odd. There are many
methods of computing the intersection pairing in special cases.

By a tensor product theorem [Gabrielov 1; Sakamoto], the Milnor
numbers of f (zy, ..., z,) and f(zq, ..., Z,) + 2241 + ... + z2 are equal. The
quadratic form of f(z,, ..., z,) is defined to be the intersection pairing of
the germ f(zg, - Z) + Zp4 1 + ... + 22, where m = 2 (mod 4). This is
independent of ‘the choice of m. For example, if n = 0 (mod 4) then the
quadratic form of f'is the negative of its intersection pairing; all this follows
from the tensor product theorem. See also [Kauffmann and Neumann].

A germ f topologically degenerates to a germ g if there is an # > 0 and
a family A, of germs for {te C:|t| < 2n} with h, ~ f, hy ~ g, and h, of
constant Milnor number for ¢ % 0. Compare [L& and Ramanujam]. Clearly
right degeneracy implies topological degeneracy.

Lemma 12.1 [Tjurina 1, Theorem 1]. If f topologically degenerates
to g, then there is an injection of H, (F,) into H, (F,) (where F, is the
Milnor fiber of £, and F, is the Milnor fiber of g), and this injection preserves
the intersection pairing. In particular, if g topologically degenerates to f as
well, then the intersection pairings of f and g are isomorphic.




— 148 —

Characterization B5. The quadratic form of fis negative definite.

The equivalence of Characterizations Bl and B5 is proved in [Tjurina 1].
By explicit computation the quadratic forms of the germs in Table 2a are
shown to be negative definite, and those of Table 2b are shown to be
negative semi-definite. (In fact, the quadratic form of a germ in Table 2a
is isomorphic to the intersection pairing of its minimal resolution, and the

quadratic form of a germ of type E, in Table 2b is isomorphic to the quad-
ratic form of E, plus a two-dimensional zero form.) The result then follows
- from Proposition 10.1 and Lemma 12.1. When n = 2, the Milnor fiber Fis
in fact diffeomorphic to the minimal resolution M of £~1(0), since the
singularity of =1 (0) is an absolutely isolated double point [Brieskorn 1,
Theorem 4; Tjurina 1, Lemma 1]. ' |

When n = 2, the equivalence of Characterizations A2 and B5 follows
from the following result [Durfee 2, Proposition 3.1].

THEOREM 12.2. Twice the geometric genus p of f _f (0) equals the
number of positive plus the number of zero diagonal elements in a diagonal-
ization of the intersection pairing over the real numbers.

The classification of germs according to signature of the quadratic
form has been extended in [Arnold 3]; see also [Durfee 2, Proposition 3.3].

13. NEARBY MORSE FUNCTIONS

A deformation of a germ fe F is a germ g: C"*! x C - C with
g (z,0) = f(2). Choose ¢ and ¢ for f as in §11. Then choose # > 0 such
that for all | 7| < # and | 6"| <6, the set {ze C"*1:g (2, 1) = '} inter-
sects S2n+1 transversally and the critical values of g (z, t) for fixed ¢ are
less than é in absolute value. A germ f is a nearby Morse function to fif f
has only non-degenerate critical points in D>"*2 and there is a deformation -
g and a #, with | #, | < 7 such that f (2) = g (z,2,).

Characterization B6. There is a nearby Morse function to Jf with one
or two critical values. | '

In fact, the nearby Morse function has one critical value if and only
if fis right equivalent to' 4,, since the quadratic form diagram is connected
(§14). This surprising characterization is in [A’Campo 2II], where it is
shown that Characterization Bl implies B6, and B6 implies B7 below.
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14. VANISHING CYCLES

Let fbe a germin &, and let f be a nearby Morse function with u distinct

crmcal values #,, ..., ¢, in the disk D} of radius § about 0.in C. A path o;in

- {ty, ..., t,} from o to ¢; determines (up. to sign) a vanishing cycle ¢,
in H (F). The self-intersection (5,, 0;)1s 2 (— 1)"/ 2 or 0 according as n is
even or odd. Choose paths a, .. , 10 D; — {t;...., t,} fromédtoty,.., 1,
respectively, such that the union of the images of the paths is a deformation
retract of D> ; then the corresponding vanishing cycles 64, ..., d,, are a basis
of H, (F) [Brieskorn 4, Appendix]. The basis d,, ..., §,, is called an. ordered
(or distinguished) basis of vanishing cycles if t,, ..., t, are ordered so that the
loop going once counter-clockwise around the boundary of Dj is homo-
topic in my (D — {t, ..., 1,}, §) to the product B, ... * B,, where B, is
the loop going out «; almost to ¢;, around ¢; counter-clockwise, and back -
along o;. References for this are [Gabrielov 1, Lamotke, Durfee 1].

Choose an ordered basis of vanishing cycles 6y, ..., d, for the inter-
section pairing (, ) of ' (zg, «ey 2,) + Zprq + ... + 22, Wwherem = 2 (mod 4)
The quadratic form diagram of f with respect to the basis d, ..., d, has
vertices vy, ..., v, and edges from v; to v; if (d;, §;) # 0, weighted by (5,, ;)
if (9;, 6;) # 1. This diagram is connected [Lazzeri; Gabrielov 2]. It deter-
mines all the topological information in the singularity if » # 2 [Durfee 1].
There are a number of methods of computing these diagrams [A’Campo 21 ;
Gabrielov 3; Gusein-Zade]. The quadratic form diagrams of the germs of
Table 2 are listed in column 5. Lemma 12.1 can be strengthened to show
that if f topologically degenerates to g, then some quadratic form diagram
for fis a subdiagram of some quadratic form diagram for g [Siersma,
p. 82].

Characterization B7. There is an ordered basis of vanishing cycles
for f'such that the quadratic form diagram is a (weighted) tree.

It is shown in [A’Campo 2II] that Characterizations Bl and B7 are
equivalent. In fact, the quadratic form diagrams for the germs in Table 2a

are the same as the graph of their minimal resolutions (column 3 of
Table 1).

5. THE MONODROMY GROUP

Let fbe a germ in &, and as above choose an ordered basis 015 .ry 0, Of
vanishing cycles for H,, (F), where F is the Milnor fiber of | |

f(ZOa'“a Zn) + Zr%+1 + ..+ Z?n

L’Enseignement mathém., t. XXV, fasc. 1-2. ' | 11
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with m = 2 (mod 4). The Picard-Lefshetz automorphisms T ;of H, (F)
fori = 1, ..., u are defined by | '

TI(X) = X + (5i,X) (Si"

Another way of writing T is . :
(5ia x.)
(6, 67)

which shows that T is a reflection in §; [Lamotke].

- The monodromy group of fis the subgroup of the automorphism group
of H, (F) generated by T4, ..., T,. This group depends only on £, since it
may also be defined as a representation of the braid group of f, which is
the fundamental group of the complement of the bifurcation diagram in |
the base space of the versal unfolding of f [Arnold 3, §2.8]. (Here is a direct
proof that the monodromy group of f is independent of the choice of
nearby Morse function f and paths aq, ..., o,: The set Dj — {ti,...t,} is
the base space of a fiber bundle with fiber F, so Ty (D§ ~ {tq, ..., Luts 5)
acts on H, (F). The image of f; in Aut H,, (F) is T;; since Bis- By
generate 7,, the monodromy group is the image of n, in Aut H,, (F ). Thus
the monodromy group is independent of the choice of Oy weny &, It s
independent of the choice of f since any two nearby Morse functions with U
distinct critical values can be joined by a family of such functions.)

T;(x) =x— 2

d;

Characterization BS. The monodromy group of £ is finite.

Characterization B5 implies Characterization B8 since the auto-
morphism group of any positive definite integral lattice is finite. In fact,
the monodromy groups are precisely the Coxeter groups of the corre-
sponding quadratic form diagram. Conversely, [Gabrielov 3] shows that |
if a germ f topologically degenerates to a germ g, then the monodromy
group of f'is a quotient of a subgroup of the monodromy gréup of g. Since
the monodromy groups of the germs in Table 2b are infinite [Gabrielov 1],
Proposition 10.1 shows that Characterization BS implies Characteriz- .
ation BI. :

16. WEIGHTED HOMOGENEOUS POLYNOMIALS

A polynomial g (z,, ..., z,) is weighted homogeneous if there are positive
rational numbers wo, ..., w, (the weights) such that g (z, ..., z,) may be
written as a sum of monomials zy ...z with io/w, + ... + i,/w, = 1



[Milnor 1, p. 75; Orlik and Wagreich]. Another way of saying this is that
if the variables z; are weighted by 1/w;, then g is homogeneous of degree one,
that is, g (A1/¥0z, ..., AY/¥nz)) = 1 g (zo, ..., Z,) for all complex numbers A.
All the germs in Table 1 are weighted homogeneous with weights as listed
in Column 7. These germs remain weighted homogeneous upon adding
squares of new variables, each weighted by 2. It is proved in [Saito 1,
Lemma 4.3] that the weights of a germ g are uniquely determined (up to
permutation) by the analytic isomorphism type of g~ 10). .

Characterization B9. The germ f~!'(0) is isomorphic to g~ (0),
where g is a weighté_d homogeneous polynomial with weights w; satisfying
wo !+ .+ w, > /2.

The equivalence of Characterizations B2 and B9 is proved in [Saito 2,
Satz 2.11]. (The r there is wo * + ... + w, L)

APPENDIX 1

NINE CHARACTERIZATIONS OF ALMOST-SIMPLE CRITICAL POINTS
(SIMPLE ELLIPTIC SINGULARITIES)

Almost-simple critical points can also be characterized in several ways.
The nine characterizations presented in thlS appendix are analogues of
some of those in the main text.

TueoreM C. Let f(zy,...,2,) with n >2 be the germ at the origin 0
of a complex analytic function, and suppose further that f(0) = 0 and that 0
is an isolated critical point. Then Characterizations C] through C9 are
equivalent.

Charagterization CI. The germ f is right equivalent to one of the
germs in Table 2b.

Characterization C2. The germ f is contact equivalent to one of the
serms in Table 2b.
The equivalence of these characterlzatlons follows from Proposition 9.1.
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