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Proposition 5.2 shows that characterizations A5’ and A1l are equivalent.
Clearly Characterization A5’ implies A5; since A5 implies A2, they are all
equivalent. »

COROLLARY 5.3. Let G be a small finite subgroup of GL (2, C). Then
G <= SL(2,C) if and only if C?/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts:

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G < SL (2, C) if and only if the singularity of C?/G is Gorenstein. '

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singu-
larity. Then V is Gorenstein if and only if V embeds in codimension 1.

Proof. Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V' is Gorenstein. Let n: M — V be the minimal resol-
ution of ¥, and let E; U ... UE, = n~! (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K - E; >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then —K > 0, so arithmetic genus p of —K satisfies p (—K) <0
[Artin, Proposition 1]. On the other hand, p (—=K) = 1 — y(—K) = 1 by
the Riemann-Roch Theorem, a contradiction. Hence K = 0. Thus K - E; |
= 0 for all 7, so V' is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization A2,

6. THE LOCAL FUNDAMENTAL GROUP

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that V is a good neighborhood of v, that is, that there is a neighborhood
basis V; of v in V such that each V; — v is a deformation retract of ¥V — v
[Prill]. The local fundamental group of V at v is then defined as , (V' —v).
This group is trivial if and only if ¥ is nonsingular at v [Mumford].
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PROPOSITION 5.1 (bis). The following statement is equivalent to those
listed above.

(d) The local fundamental group of V is finite.

It is shown in [Prill, p. 381; Brieskorn 2, p. 344] that conditions (a)
and (d) are equivalent.

Characterization A6. The local fundamental group of /'~ 1 (O) is finite.

Thus Characterizations A5 and A6 are equivalent. |

There is an algorithm for computing the local fundamental group of V
from a resolution [Mumford], and singularities ¥ with finite, nilpotent and
solvable local fundamental group have been classified [Brieskorn 2; Wag-
reich 2]. When ¥ is a complete intersection, this classification is particularly
simple [Durfee 2, Proposition 3.3].

7. VOLUME

Let f (x, y, z) be the germ at the origin 0 of a complex analytic function,
and suppose that £(0) = 0 and that the origin is an isolated critical point
of . There is an ¢ > 0 such that £~ * (0) intersects all spheres of radius g
about 0 transversally for 0 < ¢ <e. (See Section 12.) For t € C, let

V.=f"'®nD;

where D? is the closed disk of radius ¢ about 0. The function f(x, y, z) takes
of af

the constant value fon V,, so —dx + —~dy + —dz =0 there. Hence a

. ox dy 0z |
nowhere-vanishing holomorphic two-form @, on ¥, may be defined by the
equivalent expressions

dy Adz dz Adx  dx Ady
), = ] =
" 0f/ox of|dy ofoz °

Characterization A7. The integral [, wo A @, is finite.

Note that the form w, A @, takes positive real values. The equivalence
of Characterizations A2 and A7 is due to Laufer, and follows easily from
his expression for the geometric genus in terms of forms [Laufer 2, Corol-
lary 3.6].

A different formulation of this characterization is due to E. Looijenga
‘funpublished): Let 4 (r) = {tre C: ¢t < r}, let

X =f"'(4()) DS
nd let vol (X (r)) be its volume in C>.
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