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Proposition 5.2 shows that characterizations A5' and Al are equivalent.
Clearly Characterization A5' implies A5; since A5 implies A2, they are all
equivalent.

Corollary 5.3. Let G be a small finite subgroup of GL (2, C). Then
G ^ SL (2, C) if and only if C2/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts :

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G cz SL (2, C) if and only if the singularity of C2/G is Gorenstein.

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singularity.

Then V is Gorenstein if and only if V embeds in codimension 1.

Proof Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V is Gorenstein. Let n: M F be the minimal resolution

of V, and let Ex u u Es %~x (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K'Et >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then -K > 0, so arithmetic genus p of -K satisfies p(~K) <0
[Artin, Proposition 1]. On the other hand, p{~K) 1 - x{~K) 1 by
the Riemann-Roch Theorem, a contradiction. Hence K 0. Thus K • Et

0 for all z, so F is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization'A2.

6. The local fundamental group

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that F is a good neighborhood of v, that is, that there is a neighborhood
basis Vt of v in F such that each Ff - v is a deformation retract of F — v
[Prill]. The local fundamental group of F at v is then defined as 7^ (F-v).
This group is trivial if and only if F is nonsingular at v [Mumford].
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Proposition 5.1 (bis). The following statement is equivalent to those

listed above.

(d) The local fundamental group of V is finite.

It is shown in [Prill, p. 381; Brieskorn 2, p. 344] that conditions (a)

and (d) are equivalent.

Characterization A6. The local fundamental group off 1 (0) is finite.

Thus Characterizations A5 and A6 are equivalent.

There is an algorithm for computing the local fundamental group of V

from a resolution [Mumford], and singularities V with finite, nilpotent and

solvable local fundamental group have been classified [Brieskorn 2; Wag-

reich 2]. When Lis a complete intersection, this classification is particularly

simple [Durfee 2, Proposition 3.3].

7. Volume

Let/(x, y, z) be the germ at the origin 0 of a complex analytic function,
and suppose that/(0) 0 and that the origin is an isolated critical point

of/. There is an s > 0 such that/_1 (0) intersects all spheres of radius e'

about 0 transversally for 0 < e' < e. (See Section 12.) For teC, let

whereD\ is the closed disk of radius s about 0. The function/(x, takes

df df ^fthe constant value t on Vt9 so — dx + —- dy + —- dz 0 there. Hence a
dx dy dz

nowhere-vanishing holomorphic two-form cot on Vt may be defined by the

equivalent expressions

dy a dz dz a dx dx a dy

œ'dfldxdfldy

Characterization A7. The integral JFo co0 a cd0 is finite.
Note that the form co0 a cö0 takes positive real values. The equivalence

of Characterizations A2 and A7 is due to Laufer, and follows easily from
his expression for the geometric genus in terms of forms [Laufer 2, Corollary

3.6].

A different formulation of this characterization is due to E. Looijenga
{unpublished) : Let A (r) {t e C : t < rj, let

X(r) =f-1(A(r))nDt
nd let vol (X (r)) be its volume in C3.
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