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5. QUOTIENT SINGULARITIES

Let U be a neighborhood of the origin 0 in C2 and let H be a finite
group of analytic automorphisms of U fixing 0. The quotient space U/H
has the structure of a normal two-dimensional complex analytic space with
an isolated singularity, and the projection map U — U/H is ~analytic
[Cartan]. An analytic space ¥ is called a quotient singularity if there is a U
and H as above such that ¥ is isomorphic to U/H.

N An important examplé of a quotient singularity is C?/G, where G is
some finite subgroup of GL (2, C). The space C?/G is not just analytic, but
algebraic. For any finite subgroup G of GL (2, C), the ring of functions on

the algebraic variety C?/G is isomorphic to the subring of invariant poly- §

nomials in GL (2, C). Hence to find C?/G it suffices to find this subring of
invariant polynomials. Note that a finite subgroup G of GL (2, C) or
SL (2, C) is conjugate to a finite subgroup of U (2) or SU (2) respectively,
since it is possible to choose an invariant Hermitian metric on C2. A sub-
group G = GL (2, C) is small if no'g € G has 1 as an eigenvalue of multi- |
plicity one. [Prill, p. 380]. | |

PROPOSITION 5.1. Let V be the germ of a normal two-dimensional
complex analytic space. The following statements are equivalent.

(a) V is a quotient singularity.
(b) V is isomorphic to C?|G, for some finite subgroup G of GL (2, C).
(c) V is isomorphic to C2?/G, for some small Jinite subgroup of GL (2, C).

Condition (a) implies condition (b) by the usual linearization argument
[Brieskorn 2, Lemma 2.2]. It is shown in [Prill, p. 380] that condition (b)
implies condition (c). Obviously (c) implies (a). The following theorem is
also proved in [Prill]: Let G and G’ be small finite subgroups, of GL (2, C).
Then the analytic spaces C*/G and C?/G’ are isomorphic if and only if G
and G’ are conjugate.

Characterization A5. The analytic space £~ (0) is a quotient singu-
larity. , '

Since quotient singularities are rational [Brieskorn 2, p. 340], Charac-
terization A5 implies Characterization A2. The converse will follow in
round-about fashion.

Consider SU (2), which is of course isomorphic to the group S 3 of unit
quaternions. The finite subgroups of S are the cyclic group and the inverse




— 139 —

images of the finite subgroups of the rotation group SO (3) under the
double cover S3 — SO (3); these groups are listed in column 5 of Table 1.

PROPOSITION 5.2. . Let G be a non-trivial finite subgroup of SU (2) as
listed in column 5 of Table 1. Then C?|G is isomorphic to f~* (0), where f
is the corresponding polynomial in column 1.

In particular, for each polynomial £ in column 1 of Table 1 the analytic
space £~ ' (0) is isomorphic to a quotient singularity. This proposition is
proved by classical invariant theory. For the cyclic group it is easy: Let
G = SU (2) be the cyclic group of order k, generated by the transformation
(u, v) - (qu, n~ 'v) where 7 is a primitive k- root of unity. Then we claim
that C?/G is isomorphic to

V={(x2eC:x*=yz}.

Let py (u,v) = uv, py (u,v) = u¥, ps (u;v) = v*, and let p = (py, P2, P3)
define a map of C? to C3. The image of p is exactly V. Since p; (gu, gv)
= p; (u,v) for all g in G, the map p induces a map p of C*/G to V. The
map p is easily seen to be injective, and thus is an isomorphism, since
C?/G and V are normal.

The proof for the other finite subgroups G of S is similar, and may be
found in [Du Val 3]: The elements of G are listed, the subring R of C [u, v]
of invariant polynomials is found to be generated by three homogeneous
polynomials p,, p,, p3 of various degrees, and they satisfy exactly one
weighted homogeneous relation f(py, p,, p3) = 0. It follows that C2/G is
isomorphic to the zero locus of f. Special cases of this proof go back to
[Klein]. It is also possible to give a simpler uniform proof using vertices,
edges, and faces when G is the commutator subgroup [H, H] of another
finite subgroup H of S* [Milnor 2, §4].

[Du Val 3, §30] gives a geometric description of the links of these
singularities as regular solids with opposite faces identified. (The link of a
germ ¥ < C" at v is V intersected with a suitably small sphere about v.)

The finite subgroups of GL (2, C) are listed in [Du Val 3, §21] and the
corresponding quotient singularities are studied in [Brieskorn 2, p. 348].
The ring of invariant polynomials has been computed for the cyclic and
dihedral subgroups [Riemenschneider 1,2]: Generalizations of quotient
singularities and their relation to weighted homogeneous polynomials may
e found in [Milnor 2; Dolgachev].

Characterization A5'. The analytic space f~'(0) is isomorphic to
2?|G, where G is a finite subgroup of SU (2).
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Proposition 5.2 shows that characterizations A5’ and A1l are equivalent.
Clearly Characterization A5’ implies A5; since A5 implies A2, they are all
equivalent. »

COROLLARY 5.3. Let G be a small finite subgroup of GL (2, C). Then
G <= SL(2,C) if and only if C?/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts:

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G < SL (2, C) if and only if the singularity of C?/G is Gorenstein. '

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singu-
larity. Then V is Gorenstein if and only if V embeds in codimension 1.

Proof. Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V' is Gorenstein. Let n: M — V be the minimal resol-
ution of ¥, and let E; U ... UE, = n~! (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K - E; >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then —K > 0, so arithmetic genus p of —K satisfies p (—K) <0
[Artin, Proposition 1]. On the other hand, p (—=K) = 1 — y(—K) = 1 by
the Riemann-Roch Theorem, a contradiction. Hence K = 0. Thus K - E; |
= 0 for all 7, so V' is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization A2,

6. THE LOCAL FUNDAMENTAL GROUP

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that V is a good neighborhood of v, that is, that there is a neighborhood
basis V; of v in V such that each V; — v is a deformation retract of ¥V — v
[Prill]. The local fundamental group of V at v is then defined as , (V' —v).
This group is trivial if and only if ¥ is nonsingular at v [Mumford].
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