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5. Quotient singularities

Let Ubea neighborhood of the origin 0 in C2 and let be a finite
group of analytic automorphisms of U fixing 0. The quotient space U/H
has the structure of a normal two-dimensional complex analytic space with
an isolated singularity, and the projection map U/H is analytic
[Cartan], An analytic space V is called a quotient singularity if there is a
and H as above such that Visisomorphic to U/H.

An important example of a quotient singularity is C2/G, where G is
some finite subgroup of GL (2, C). The space C is not just analytic, but
algebraic. For any finite subgroup G of GL (2, C), the ring of functions on
the algebraic variety C2/G is isomorphic to the subring of invariant
polynomials in GL (2, C). Hence to find C it suffices to find this subring of
invariant polynomials. Note that a finite subgroup 6 of GL (2, C) or
SL (2, C) is conjugate to a finite subgroup of U (2) or respectively,
since it is possible to choose an invariant Hermitian metric on C2. A
subgroup G c GL (2, C) is small if no ge Ghas 1 as an eigenvalue of
multiplicity one. [Prill, p. 380],

Proposition 5.1. Let V be the germ of a normal two-dimensional
complex analytic space. The following statements are equivalent.

(a) V is a quotient singularity.

(b) Visisomorphic to C2/G, for somefinite subgroup G of GL (2, C).
(c) V is isomorphic to C 2IG,forsome small finite subgroup GL (2, C).

Condition (a) implies condition (b) by the usual linearization argument
[Brieskorn 2, Lemma 2.2], It is shown in [Prill, p. 380] that condition (b)
implies condition (c). Obviously (c) implies (a). The following theorem is
also proved in [Prill]: Let Gand G'besmall finite subgroups, of GL (2, C).
Then the analytic spaces C 2IGand C 2/areisomorphic if and only if G
and G' are conjugate.

Characterization A5. The analytic space f~1(0) is a quotient singularity.

Since quotient singularities are rational [Brieskorn 2, p. 340],
Characterization A5 implies Characterization A2. The converse will follow in
round-about fashion.

Consider SU (2), which is of course isomorphic to the group S 3 of unit
quaternions. The finite subgroups of S 3 are the cyclic group and the inverse



— 139 —

images of the finite subgroups of the rotation group SO (3) under the

double cover S3 -» SO (3); these groups are listed in column 5 of Table 1.

Proposition 5.2. Let G be a non-trivial finite subgroup of SU (2) as

listed in column 5 of Table 1. Then C2\G is isomorphic to f'1 (0), where f
is the corresponding polynomial in column 1.

In particular, for each polynomial/in column 1 of Table 1 the analytic

space /_1 (0) is isomorphic to a quotient singularity. This proposition is

proved by classical invariant theory. For the cyclic group it is easy: Let
G a SU (2) be the cyclic group of order k, generated byThe transformation
(u, v) -» (rju, rj'h) where rj is a primitive k-th root of unity. Then we claim
that C2/G is isomorphic to

V {(x, y,z)e C3 :xk yz}

Let p1 (u, v) uv, p2 (u, v) zA p3 (iu, v) vk, and let p (PuP2,p2)
define a map of C2 to C3. The image of p is exactly V. Since Pi(gu,gv)

Pi (;u, v) for all g in G, the map p induces a map p of C2/G to V. The

map p is easily seen to be injective, and thus is an isomorphism, since

C2/G and V are normal.
The proof for the other finite subgroups G of S 3 is similar, and may be

found in [Du Val 3] : The elements of G are listed, the subring R of C [u, z;]

of invariant polynomials is found to be generated by three homogeneous
polynomials Pi,p2>P3 of various degrees, and they satisfy exactly one
weighted homogeneous relation f{p\,p2^Pz) 0- It follows that C2/G is

isomorphic to the zero locus of /. Special cases of this proof go back to
[Klein]. It is also possible to give a simpler uniform proof using vertices,
edges, and faces when G is the commutator subgroup [H, H] of another
finite subgroup H of S 3 [Milnor 2, §4].

[Du Val 3, §30] gives a geometric description of the links of these

singularities as regular solids with opposite faces identified. (The link of a

germ V c C" at v is V intersected with a suitably small sphere about v.)
The finite subgroups of GL (2, C) are listed in [Du Val 3, §21] and the

corresponding quotient singularities are studied in [Brieskorn 2, p. 348].
The ring of invariant polynomials has been computed for the cyclic and
dihedral subgroups [Riemenschneider 1,2]. Generalizations of quotient
singularities and their relation to weighted homogeneous polynomials may
be found in [Milnor 2; Dolgachev].

Characterization A5'. The analytic space /_1(0) is isomorphic to
b2/G, where G is a finite subgroup of SU (2).
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Proposition 5.2 shows that characterizations A5' and Al are equivalent.
Clearly Characterization A5' implies A5; since A5 implies A2, they are all
equivalent.

Corollary 5.3. Let G be a small finite subgroup of GL (2, C). Then
G ^ SL (2, C) if and only if C2/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts :

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G cz SL (2, C) if and only if the singularity of C2/G is Gorenstein.

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singularity.

Then V is Gorenstein if and only if V embeds in codimension 1.

Proof Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V is Gorenstein. Let n: M F be the minimal resolution

of V, and let Ex u u Es %~x (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K'Et >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then -K > 0, so arithmetic genus p of -K satisfies p(~K) <0
[Artin, Proposition 1]. On the other hand, p{~K) 1 - x{~K) 1 by
the Riemann-Roch Theorem, a contradiction. Hence K 0. Thus K • Et

0 for all z, so F is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization'A2.

6. The local fundamental group

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that F is a good neighborhood of v, that is, that there is a neighborhood
basis Vt of v in F such that each Ff - v is a deformation retract of F — v
[Prill]. The local fundamental group of F at v is then defined as 7^ (F-v).
This group is trivial if and only if F is nonsingular at v [Mumford].
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