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Characterization A2. The singularity of £~ ! (0) is rational. .
Characterizations A1 and A2 will both be shown equivalent to Charac—
terization A3.

3. EXCEPTIONAL SETS

Let V' be as above, and let n: M — ¥V be a resolution of V. The excep-
tional set E = n“l_(v) is compact, one-dimensional, and connected, and
hence is a union of irreducible complex curves E|, ..., E,. It is possible to
arrange that the E; are non-singular, the intersection of E; and E is trans-
verse for i # j, and no three E; meet at a point. Such a resolution is called.
good. If, in addition, the intersection of E; and E; is empty or one point,
the resolution is very good; this is possible to arrange as well.

Suppose that the resolution is good. Let E; - E; equal the number of
points of intersection of E; and E; if i # j (always a non-negative integer),
or the first Chern class of the normal bundle to E; evaluated on the orien-
tation class of E; if i = j (the self-intersection of E;). The matrix {E; -E;}
is called the intersection matrix of the resolution. It is proved in [Du Val 2]
(see also [Mumford; Laufer 1, p. 49]) that this matrix is negative definite.
Conversely, given a collection of curves E = E; U .. UE, in a two-
dimensional manifold M with negative definite intersection matrix
{E;- E;}, a theorem of Grauert says that the quotient space M/E has a
normal complex structure and that the projection map M — M/E is analytic
[Laufer 1, p. 60].

Characterization A3. The minimal resolution of ™! (0) is very good,
and its exceptional set consists of curves of genus 0 and self-intersection — 2.

The equivalence of Characterizations A2 and A3 is proved in [Du Val 1],
and [Artin]. The following facts are needed:

(1) Let M — V be a resolution of a normal singularitgf V as above.
There 1s a certain unique non-zero divisor Z = Xn; E; on M with
n; >0 called the fundamental cycle, and it is shown that the singu- -
larity of ¥ is rational if and only if the analytic Euler characteristic |
x(Z) of Z is 1 (that is, the arithmetic genus of Z is 0) [Artin,

Theorem 3]. It is easy to see that the support of Z is the whole §

exceptional set.of E.

(11) Any resolution of a rational singularity V is very good, and the
curves in the exceptional set are of genus zero [Brieskorn 2,
Lemma 1.3].




— 135 —

(iii) A rational singularity V' embeds in codimension one if and onlylif
it is a double point, which is true if and only if Z 2 = —2 [Artin,
Corollary 6].

(A2) = (A3): We only need show E? = —2 for all i. Certainly
E? < =2, since if E 2 = —1 the resolution could be contracted by Castel-
nuovo’s criterion, and E? >0 would contradict the fact that the matrix
{E; - E;} is negative definite. Let K be the canonical class of M. (This exists
since V is Gorenstein; see for instance [Durfee 2].) The adjunction formula
~E;-K = E% + 2 then shows that E; - K >0 for each i. The Riemann-

1 :
Roch Theorem x(Z) = — —zi(Z 2 4+7 - K) implies that Z-K = 0. Thus

0=Z-K>E;+..1TE) K> E;-K >0. Hence E; - K = 0 for all i, so
again by the adjunction formula, E? = -2,

(43) = (A2): The adjunction formula implies that E;-K = 0 for
all i; since the matrix {E;-E,} is negative definite, K = 0. Thus ¥ (2)

1
= EZZ by the Riemann-Roch Theorem. Since x(Z) <1 and Z? <0

(again since {E;- E;} is negative definite), X(Z) must be 1 and Z? must
be —2. This completes the proof.

Now, exactly what exceptional sets satisfy Characterization A3? First
some algebra. It is possible to associate a weighted graph to any symmetric
integral bilinear form ¢, ) on a free module with basis e, ..., e; satisfying
{e;, e;y >0 for i # j: The vertices of the graph are vy, ..., v, tWo vertices
v; and v; are joined by {e;, e;) edges, and the vertex v; is weighted by the
integer <e;, e;>. Conversely, a weighted graph defines such a bilinear form.

Let T, , . be the weighted graph
P q
o—o .. o-———T‘— .. —©
®
7
®
|
|
| 3

vhere p, ¢, and r are positive integers, and all vertices are weighted by
-2,
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" Lemma 3.1 [Hirzebruch 2, p. 217]. The only connected graphs weighted
by —2 and whose associated bilinear form is negative definite are of type
T4, Where p, g, and r are positive integers satisfying p=' + ¢~ 1 + r~1
> 1. :

Proof. | (a) If the bilinear forrn_ associated to a graph is negative definite,
so is the bilinear form associated to any subgraph.

(b) The graph (s> 2)

‘ -
where all vertices ey, ..., e, are weighted by —2, is not negative definite,
since (e, +...+e)?* = O

(c) The graph

where all vertices are welghted by —2, is not negatwe definite,  since -
ey +..t2etfi+.. . +f)? =

Thus the graph must be of the form T, , .. An elementary argument
shows that the bilinear form of 7, , , is isomorphic over the rationals to
the direct sum of a negatlve definite form and the one-dimensional form
{1 —-p~ - q‘1 — r~ 1. Hence T, ,.r s negative definite if and only if -
p~' + ¢!+ r~! > 1. This proves the lemma.

The only triples of positive integers (p, g, r) satlsfymg p~t+gqg1
+r~' > 1 are of course just (1,1,r) for r >1, (2,2,r) for r >2,
(2, 3,3), (2,3,4), and (2, 3, 5). B ‘

The dual graph of a resolution of a singularity is defined to be the weighted
graph associated to the intersection matrix of the resolution. Applying the

above facts, we see that Characterization A3 is equivalent to:

Characterization A3'. The minimal resolution of £~ ! (0) is listed in
column (3) of Table 1. | | |

Next we show that Characterization Al and A3 are equivalent. Charac-
terization Al implies Characterization A3 since the singularities of the
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functions f listed in column 1 of Table 1 have minimal resolutions as in
column 3. (I believe that this first appeared in [Hirzebruch 1].) The converse
follows since the singularities listed are taut [Brieskorn 2; Tjurina 3;
Laufer 4]. (Two resolutions n: M — V and n': M' — V" are topologically
equivalent if their exceptional sets are homeomorphic by a homeomorphism
preserving the self-intersection numbers. A singularity V is faut if any other
singularity with a good resolution topologically equivalent to a good
resolution of V is then isomorphic to V.) '

The classification of rational double points has been generalized in
several ways: to rational triple points [Artin, p. 135], to elliptic singularities
[Wagreich 1], and to minimally elliptic singularities [Laufer 5]. The Dynkin
diagrams B,, C,, F, and G, occur when resolving singularities over non-
algebraically closed fields [Lipman 1]. There is also a relation with simple
complex Lie groups [Brieskorn 3].

4. ABSOLUTELY ISOLATED DOUBLE POINTS

There are at least three methods of resolving the singularity of the germ
of a normal two-dimensional complex space V. The first method is one of
local uniformization; this is originally due to Jung, and is described in
detail in [Laufer 1]. The second method, due to Zariski, is to alternately
blow up points and normalize. The third method (which generalizes to
higher dimensions), is to blow up points and non-singular curves.

The singularity of V is absolutely isolated if it may be resolved by blowing
up points alone, that is, it is not necessary to normalize or blow up curves.
For example, the singularity of the zero locus of f (x, y,z) = x* + y* + 2
is absolutely isolated, since it may be resolved by blowing up the origin once.

The singularity of V"is a double point if its local ring is of multiplicity
two. If Vis £~ * (0), this is equivalent to the lowest non-zero homogeneous
term in the power series expansion of f being quadratic.-

Characterization A4. The singularity of f~1(0) is “an absolutely
isolated double point.

The equivalence of Characterizations Al and A4 was proved directly
in [Kirby]. Later, it was shown [Tjurina 2; Lipman 1] that all rational
singularities are absolutely isolated (thus showing Characterization A2
mmplies A4), and in [Brieskorn 1, Satz 1] that A4 implies A3.
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