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germs ¥ and W embedded in C” at the origin are isomorphic if there is a
germ of an analytic automorphism of C" fixing the origin and taking V

to W.

Characterization AI. The analytic set £~ 1 (0) is isomorphic to the
zero locus of one of the functions listed in column 1 of Table 1.

2. RATIONAL SINGULARITIES

A resolution of a germ of a normal surface singularity V" as above is a
complex analytic manifold M and an analytic map n: M — V' that is
surjective and proper (compact fibers) such that its restriction to
M — n~ 1 (v) is an analytic isomorphism, and M — n~ ! (v) is dense in M.
Resolutions exist, and can be computed with a certain amount of effort.
The article [Lipman 2] contains a general discussion of resolutions, and
[Laufer 1] and [Hirzebruch, Neumann, and Koh, §9] give a detailed method
with examples.

Among all resolutions there is a minimal resolution m: M — V that has
the following universal mapping property: Given any other resolution
n': M' — V, there is a unique map p: M’ - M with n" = = © p.

The geometric genus p of V is the dimension of the complex vector space
H' (M, 0,), where M is any resolution of ¥, and @), is the sheaf of holo-
morphic functions on M [Artin; Wagreich 1, §1.4; Brieskorn 2; Laufer 2].
(V is assumed Stein.) This number is finite, and independent of the choice
of resolution. It may alternately be defined as the dimension of the stalk
at the origin of the sheaf R' m, 0, on V. The idea behind this definition is
that M is a collection of “thickened” curves, and that the genus of a curve X
is the dimension of H! (X, 0Oy). For example, H' (M, 0,,) = 0 if M is
the total space of a line bundle over a curve of genus zero. On the other
hand, dim H! (M, 0,,) = k (k—1) (k—2)/6 if M is a line bundle of Chern
class —k over a curve of genus (k—1) (k—2)/2 (the minimal resolution
of f(x,y,2) = x* + y* + 2. In terms of V alone, p is the dimension of
the space of holomorphic two-forms on V' — v divided by square-integrable
forms [Laufer 2, Theorem 3.4]. Another formula for p in terms of topological
invariants of the resolution M and the nearby fiber F (see §11) is given in
[Laufer 6]. B

The analytic set ¥ has a rational singularity if p = 0. A rational singu-
larity embeds in codimension 1 if and only if it is a double point (its local
ring is of multiplicity two) [Artin, Corollary 6].
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Characterization A2. The singularity of £~ ! (0) is rational. .
Characterizations A1 and A2 will both be shown equivalent to Charac—
terization A3.

3. EXCEPTIONAL SETS

Let V' be as above, and let n: M — ¥V be a resolution of V. The excep-
tional set E = n“l_(v) is compact, one-dimensional, and connected, and
hence is a union of irreducible complex curves E|, ..., E,. It is possible to
arrange that the E; are non-singular, the intersection of E; and E is trans-
verse for i # j, and no three E; meet at a point. Such a resolution is called.
good. If, in addition, the intersection of E; and E; is empty or one point,
the resolution is very good; this is possible to arrange as well.

Suppose that the resolution is good. Let E; - E; equal the number of
points of intersection of E; and E; if i # j (always a non-negative integer),
or the first Chern class of the normal bundle to E; evaluated on the orien-
tation class of E; if i = j (the self-intersection of E;). The matrix {E; -E;}
is called the intersection matrix of the resolution. It is proved in [Du Val 2]
(see also [Mumford; Laufer 1, p. 49]) that this matrix is negative definite.
Conversely, given a collection of curves E = E; U .. UE, in a two-
dimensional manifold M with negative definite intersection matrix
{E;- E;}, a theorem of Grauert says that the quotient space M/E has a
normal complex structure and that the projection map M — M/E is analytic
[Laufer 1, p. 60].

Characterization A3. The minimal resolution of ™! (0) is very good,
and its exceptional set consists of curves of genus 0 and self-intersection — 2.

The equivalence of Characterizations A2 and A3 is proved in [Du Val 1],
and [Artin]. The following facts are needed:

(1) Let M — V be a resolution of a normal singularitgf V as above.
There 1s a certain unique non-zero divisor Z = Xn; E; on M with
n; >0 called the fundamental cycle, and it is shown that the singu- -
larity of ¥ is rational if and only if the analytic Euler characteristic |
x(Z) of Z is 1 (that is, the arithmetic genus of Z is 0) [Artin,

Theorem 3]. It is easy to see that the support of Z is the whole §

exceptional set.of E.

(11) Any resolution of a rational singularity V is very good, and the
curves in the exceptional set are of genus zero [Brieskorn 2,
Lemma 1.3].
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