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fifteen characterizations, since Characterization Al coincides with Charac-
terization B2. -

Most of the characterizations of Part B are shown to be equivalent to
Characterization B1. Other links between the two sets of characterizations
are provided by Theorem 12.2, which shows that Characterizations A2 and §
B5 are equivalent, and a recent result (Theorem 11.1) partially connecting
Characterizations A2 and B3. Part B also contains a summary of pertinent
work of Mather and Arnold.

There are two appendices. The first gives nine characterizations of
simple elliptic singularities and almost-simple critical points. They are the
next most reasonable class of singularities after rational double points, and §
can be characterized as being “infinite but not too infinite”. All remaining
singularities are “very infinite” in various senses. The second appendix |
contains Looijenga’s proof that the monodromy group of the minimal |
hyperbolic germs has exponential growth.

This paper is an expanded version of a series of lectures given at the §
University of Maryland in the spring of 1976, and I thank the department
of mathematics for its hospitality. The lectures were inspired by an un-
published talk given by E. Brieskorn at the American Mathematical Society
Summer Institute in Algebraic Geometry in Arcata (1974). I also-thank
E. Looijenga and J. Wahl for helpful comments. ‘

A. SEVEN CHARACTERIZATIONS OF RATIONAL DOUBLE POINTS

THEOREM A. Let f(x,y,z) be the germ at the origin 0 of a complex
analytic function, and suppose that f(0) = 0 and that the origin is an |}
isolated critical point of f. Then characterizations Al through A7 (which
are listed below) are equivalent. )

1. COMPLEX ANALYTIC SPACES

Let ¥V bé the germ at v of a normal two-dimensional complex analytic
space with a singularity at v. (The definitions of ‘these terms can be found
in [Laufer 1].) For example, ¥ could be f ~ ! (0), where fis as in the hypotheses §
of Theorem A. Conversely, if V is embedded in C?® with v the origin, there §
is a germ f as above such that V is isomorphic to f~* (0) [Gunning and
Rossi, p. 113]. The singularity‘is isolated since ¥ is normal. Two such §
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germs ¥ and W embedded in C” at the origin are isomorphic if there is a
germ of an analytic automorphism of C" fixing the origin and taking V

to W.

Characterization AI. The analytic set £~ 1 (0) is isomorphic to the
zero locus of one of the functions listed in column 1 of Table 1.

2. RATIONAL SINGULARITIES

A resolution of a germ of a normal surface singularity V" as above is a
complex analytic manifold M and an analytic map n: M — V' that is
surjective and proper (compact fibers) such that its restriction to
M — n~ 1 (v) is an analytic isomorphism, and M — n~ ! (v) is dense in M.
Resolutions exist, and can be computed with a certain amount of effort.
The article [Lipman 2] contains a general discussion of resolutions, and
[Laufer 1] and [Hirzebruch, Neumann, and Koh, §9] give a detailed method
with examples.

Among all resolutions there is a minimal resolution m: M — V that has
the following universal mapping property: Given any other resolution
n': M' — V, there is a unique map p: M’ - M with n" = = © p.

The geometric genus p of V is the dimension of the complex vector space
H' (M, 0,), where M is any resolution of ¥, and @), is the sheaf of holo-
morphic functions on M [Artin; Wagreich 1, §1.4; Brieskorn 2; Laufer 2].
(V is assumed Stein.) This number is finite, and independent of the choice
of resolution. It may alternately be defined as the dimension of the stalk
at the origin of the sheaf R' m, 0, on V. The idea behind this definition is
that M is a collection of “thickened” curves, and that the genus of a curve X
is the dimension of H! (X, 0Oy). For example, H' (M, 0,,) = 0 if M is
the total space of a line bundle over a curve of genus zero. On the other
hand, dim H! (M, 0,,) = k (k—1) (k—2)/6 if M is a line bundle of Chern
class —k over a curve of genus (k—1) (k—2)/2 (the minimal resolution
of f(x,y,2) = x* + y* + 2. In terms of V alone, p is the dimension of
the space of holomorphic two-forms on V' — v divided by square-integrable
forms [Laufer 2, Theorem 3.4]. Another formula for p in terms of topological
invariants of the resolution M and the nearby fiber F (see §11) is given in
[Laufer 6]. B

The analytic set ¥ has a rational singularity if p = 0. A rational singu-
larity embeds in codimension 1 if and only if it is a double point (its local
ring is of multiplicity two) [Artin, Corollary 6].
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Characterization A2. The singularity of £~ ! (0) is rational. .
Characterizations A1 and A2 will both be shown equivalent to Charac—
terization A3.

3. EXCEPTIONAL SETS

Let V' be as above, and let n: M — ¥V be a resolution of V. The excep-
tional set E = n“l_(v) is compact, one-dimensional, and connected, and
hence is a union of irreducible complex curves E|, ..., E,. It is possible to
arrange that the E; are non-singular, the intersection of E; and E is trans-
verse for i # j, and no three E; meet at a point. Such a resolution is called.
good. If, in addition, the intersection of E; and E; is empty or one point,
the resolution is very good; this is possible to arrange as well.

Suppose that the resolution is good. Let E; - E; equal the number of
points of intersection of E; and E; if i # j (always a non-negative integer),
or the first Chern class of the normal bundle to E; evaluated on the orien-
tation class of E; if i = j (the self-intersection of E;). The matrix {E; -E;}
is called the intersection matrix of the resolution. It is proved in [Du Val 2]
(see also [Mumford; Laufer 1, p. 49]) that this matrix is negative definite.
Conversely, given a collection of curves E = E; U .. UE, in a two-
dimensional manifold M with negative definite intersection matrix
{E;- E;}, a theorem of Grauert says that the quotient space M/E has a
normal complex structure and that the projection map M — M/E is analytic
[Laufer 1, p. 60].

Characterization A3. The minimal resolution of ™! (0) is very good,
and its exceptional set consists of curves of genus 0 and self-intersection — 2.

The equivalence of Characterizations A2 and A3 is proved in [Du Val 1],
and [Artin]. The following facts are needed:

(1) Let M — V be a resolution of a normal singularitgf V as above.
There 1s a certain unique non-zero divisor Z = Xn; E; on M with
n; >0 called the fundamental cycle, and it is shown that the singu- -
larity of ¥ is rational if and only if the analytic Euler characteristic |
x(Z) of Z is 1 (that is, the arithmetic genus of Z is 0) [Artin,

Theorem 3]. It is easy to see that the support of Z is the whole §

exceptional set.of E.

(11) Any resolution of a rational singularity V is very good, and the
curves in the exceptional set are of genus zero [Brieskorn 2,
Lemma 1.3].
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(iii) A rational singularity V' embeds in codimension one if and onlylif
it is a double point, which is true if and only if Z 2 = —2 [Artin,
Corollary 6].

(A2) = (A3): We only need show E? = —2 for all i. Certainly
E? < =2, since if E 2 = —1 the resolution could be contracted by Castel-
nuovo’s criterion, and E? >0 would contradict the fact that the matrix
{E; - E;} is negative definite. Let K be the canonical class of M. (This exists
since V is Gorenstein; see for instance [Durfee 2].) The adjunction formula
~E;-K = E% + 2 then shows that E; - K >0 for each i. The Riemann-

1 :
Roch Theorem x(Z) = — —zi(Z 2 4+7 - K) implies that Z-K = 0. Thus

0=Z-K>E;+..1TE) K> E;-K >0. Hence E; - K = 0 for all i, so
again by the adjunction formula, E? = -2,

(43) = (A2): The adjunction formula implies that E;-K = 0 for
all i; since the matrix {E;-E,} is negative definite, K = 0. Thus ¥ (2)

1
= EZZ by the Riemann-Roch Theorem. Since x(Z) <1 and Z? <0

(again since {E;- E;} is negative definite), X(Z) must be 1 and Z? must
be —2. This completes the proof.

Now, exactly what exceptional sets satisfy Characterization A3? First
some algebra. It is possible to associate a weighted graph to any symmetric
integral bilinear form ¢, ) on a free module with basis e, ..., e; satisfying
{e;, e;y >0 for i # j: The vertices of the graph are vy, ..., v, tWo vertices
v; and v; are joined by {e;, e;) edges, and the vertex v; is weighted by the
integer <e;, e;>. Conversely, a weighted graph defines such a bilinear form.

Let T, , . be the weighted graph
P q
o—o .. o-———T‘— .. —©
®
7
®
|
|
| 3

vhere p, ¢, and r are positive integers, and all vertices are weighted by
-2,
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" Lemma 3.1 [Hirzebruch 2, p. 217]. The only connected graphs weighted
by —2 and whose associated bilinear form is negative definite are of type
T4, Where p, g, and r are positive integers satisfying p=' + ¢~ 1 + r~1
> 1. :

Proof. | (a) If the bilinear forrn_ associated to a graph is negative definite,
so is the bilinear form associated to any subgraph.

(b) The graph (s> 2)

‘ -
where all vertices ey, ..., e, are weighted by —2, is not negative definite,
since (e, +...+e)?* = O

(c) The graph

where all vertices are welghted by —2, is not negatwe definite,  since -
ey +..t2etfi+.. . +f)? =

Thus the graph must be of the form T, , .. An elementary argument
shows that the bilinear form of 7, , , is isomorphic over the rationals to
the direct sum of a negatlve definite form and the one-dimensional form
{1 —-p~ - q‘1 — r~ 1. Hence T, ,.r s negative definite if and only if -
p~' + ¢!+ r~! > 1. This proves the lemma.

The only triples of positive integers (p, g, r) satlsfymg p~t+gqg1
+r~' > 1 are of course just (1,1,r) for r >1, (2,2,r) for r >2,
(2, 3,3), (2,3,4), and (2, 3, 5). B ‘

The dual graph of a resolution of a singularity is defined to be the weighted
graph associated to the intersection matrix of the resolution. Applying the

above facts, we see that Characterization A3 is equivalent to:

Characterization A3'. The minimal resolution of £~ ! (0) is listed in
column (3) of Table 1. | | |

Next we show that Characterization Al and A3 are equivalent. Charac-
terization Al implies Characterization A3 since the singularities of the
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functions f listed in column 1 of Table 1 have minimal resolutions as in
column 3. (I believe that this first appeared in [Hirzebruch 1].) The converse
follows since the singularities listed are taut [Brieskorn 2; Tjurina 3;
Laufer 4]. (Two resolutions n: M — V and n': M' — V" are topologically
equivalent if their exceptional sets are homeomorphic by a homeomorphism
preserving the self-intersection numbers. A singularity V is faut if any other
singularity with a good resolution topologically equivalent to a good
resolution of V is then isomorphic to V.) '

The classification of rational double points has been generalized in
several ways: to rational triple points [Artin, p. 135], to elliptic singularities
[Wagreich 1], and to minimally elliptic singularities [Laufer 5]. The Dynkin
diagrams B,, C,, F, and G, occur when resolving singularities over non-
algebraically closed fields [Lipman 1]. There is also a relation with simple
complex Lie groups [Brieskorn 3].

4. ABSOLUTELY ISOLATED DOUBLE POINTS

There are at least three methods of resolving the singularity of the germ
of a normal two-dimensional complex space V. The first method is one of
local uniformization; this is originally due to Jung, and is described in
detail in [Laufer 1]. The second method, due to Zariski, is to alternately
blow up points and normalize. The third method (which generalizes to
higher dimensions), is to blow up points and non-singular curves.

The singularity of V is absolutely isolated if it may be resolved by blowing
up points alone, that is, it is not necessary to normalize or blow up curves.
For example, the singularity of the zero locus of f (x, y,z) = x* + y* + 2
is absolutely isolated, since it may be resolved by blowing up the origin once.

The singularity of V"is a double point if its local ring is of multiplicity
two. If Vis £~ * (0), this is equivalent to the lowest non-zero homogeneous
term in the power series expansion of f being quadratic.-

Characterization A4. The singularity of f~1(0) is “an absolutely
isolated double point.

The equivalence of Characterizations Al and A4 was proved directly
in [Kirby]. Later, it was shown [Tjurina 2; Lipman 1] that all rational
singularities are absolutely isolated (thus showing Characterization A2
mmplies A4), and in [Brieskorn 1, Satz 1] that A4 implies A3.
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5. QUOTIENT SINGULARITIES

Let U be a neighborhood of the origin 0 in C2 and let H be a finite
group of analytic automorphisms of U fixing 0. The quotient space U/H
has the structure of a normal two-dimensional complex analytic space with
an isolated singularity, and the projection map U — U/H is ~analytic
[Cartan]. An analytic space ¥ is called a quotient singularity if there is a U
and H as above such that ¥ is isomorphic to U/H.

N An important examplé of a quotient singularity is C?/G, where G is
some finite subgroup of GL (2, C). The space C?/G is not just analytic, but
algebraic. For any finite subgroup G of GL (2, C), the ring of functions on

the algebraic variety C?/G is isomorphic to the subring of invariant poly- §

nomials in GL (2, C). Hence to find C?/G it suffices to find this subring of
invariant polynomials. Note that a finite subgroup G of GL (2, C) or
SL (2, C) is conjugate to a finite subgroup of U (2) or SU (2) respectively,
since it is possible to choose an invariant Hermitian metric on C2. A sub-
group G = GL (2, C) is small if no'g € G has 1 as an eigenvalue of multi- |
plicity one. [Prill, p. 380]. | |

PROPOSITION 5.1. Let V be the germ of a normal two-dimensional
complex analytic space. The following statements are equivalent.

(a) V is a quotient singularity.
(b) V is isomorphic to C?|G, for some finite subgroup G of GL (2, C).
(c) V is isomorphic to C2?/G, for some small Jinite subgroup of GL (2, C).

Condition (a) implies condition (b) by the usual linearization argument
[Brieskorn 2, Lemma 2.2]. It is shown in [Prill, p. 380] that condition (b)
implies condition (c). Obviously (c) implies (a). The following theorem is
also proved in [Prill]: Let G and G’ be small finite subgroups, of GL (2, C).
Then the analytic spaces C*/G and C?/G’ are isomorphic if and only if G
and G’ are conjugate.

Characterization A5. The analytic space £~ (0) is a quotient singu-
larity. , '

Since quotient singularities are rational [Brieskorn 2, p. 340], Charac-
terization A5 implies Characterization A2. The converse will follow in
round-about fashion.

Consider SU (2), which is of course isomorphic to the group S 3 of unit
quaternions. The finite subgroups of S are the cyclic group and the inverse
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images of the finite subgroups of the rotation group SO (3) under the
double cover S3 — SO (3); these groups are listed in column 5 of Table 1.

PROPOSITION 5.2. . Let G be a non-trivial finite subgroup of SU (2) as
listed in column 5 of Table 1. Then C?|G is isomorphic to f~* (0), where f
is the corresponding polynomial in column 1.

In particular, for each polynomial £ in column 1 of Table 1 the analytic
space £~ ' (0) is isomorphic to a quotient singularity. This proposition is
proved by classical invariant theory. For the cyclic group it is easy: Let
G = SU (2) be the cyclic group of order k, generated by the transformation
(u, v) - (qu, n~ 'v) where 7 is a primitive k- root of unity. Then we claim
that C?/G is isomorphic to

V={(x2eC:x*=yz}.

Let py (u,v) = uv, py (u,v) = u¥, ps (u;v) = v*, and let p = (py, P2, P3)
define a map of C? to C3. The image of p is exactly V. Since p; (gu, gv)
= p; (u,v) for all g in G, the map p induces a map p of C*/G to V. The
map p is easily seen to be injective, and thus is an isomorphism, since
C?/G and V are normal.

The proof for the other finite subgroups G of S is similar, and may be
found in [Du Val 3]: The elements of G are listed, the subring R of C [u, v]
of invariant polynomials is found to be generated by three homogeneous
polynomials p,, p,, p3 of various degrees, and they satisfy exactly one
weighted homogeneous relation f(py, p,, p3) = 0. It follows that C2/G is
isomorphic to the zero locus of f. Special cases of this proof go back to
[Klein]. It is also possible to give a simpler uniform proof using vertices,
edges, and faces when G is the commutator subgroup [H, H] of another
finite subgroup H of S* [Milnor 2, §4].

[Du Val 3, §30] gives a geometric description of the links of these
singularities as regular solids with opposite faces identified. (The link of a
germ ¥ < C" at v is V intersected with a suitably small sphere about v.)

The finite subgroups of GL (2, C) are listed in [Du Val 3, §21] and the
corresponding quotient singularities are studied in [Brieskorn 2, p. 348].
The ring of invariant polynomials has been computed for the cyclic and
dihedral subgroups [Riemenschneider 1,2]: Generalizations of quotient
singularities and their relation to weighted homogeneous polynomials may
e found in [Milnor 2; Dolgachev].

Characterization A5'. The analytic space f~'(0) is isomorphic to
2?|G, where G is a finite subgroup of SU (2).
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Proposition 5.2 shows that characterizations A5’ and A1l are equivalent.
Clearly Characterization A5’ implies A5; since A5 implies A2, they are all
equivalent. »

COROLLARY 5.3. Let G be a small finite subgroup of GL (2, C). Then
G <= SL(2,C) if and only if C?/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts:

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G < SL (2, C) if and only if the singularity of C?/G is Gorenstein. '

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singu-
larity. Then V is Gorenstein if and only if V embeds in codimension 1.

Proof. Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V' is Gorenstein. Let n: M — V be the minimal resol-
ution of ¥, and let E; U ... UE, = n~! (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K - E; >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then —K > 0, so arithmetic genus p of —K satisfies p (—K) <0
[Artin, Proposition 1]. On the other hand, p (—=K) = 1 — y(—K) = 1 by
the Riemann-Roch Theorem, a contradiction. Hence K = 0. Thus K - E; |
= 0 for all 7, so V' is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization A2,

6. THE LOCAL FUNDAMENTAL GROUP

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that V is a good neighborhood of v, that is, that there is a neighborhood
basis V; of v in V such that each V; — v is a deformation retract of ¥V — v
[Prill]. The local fundamental group of V at v is then defined as , (V' —v).
This group is trivial if and only if ¥ is nonsingular at v [Mumford].
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PROPOSITION 5.1 (bis). The following statement is equivalent to those
listed above.

(d) The local fundamental group of V is finite.

It is shown in [Prill, p. 381; Brieskorn 2, p. 344] that conditions (a)
and (d) are equivalent.

Characterization A6. The local fundamental group of /'~ 1 (O) is finite.

Thus Characterizations A5 and A6 are equivalent. |

There is an algorithm for computing the local fundamental group of V
from a resolution [Mumford], and singularities ¥ with finite, nilpotent and
solvable local fundamental group have been classified [Brieskorn 2; Wag-
reich 2]. When ¥ is a complete intersection, this classification is particularly
simple [Durfee 2, Proposition 3.3].

7. VOLUME

Let f (x, y, z) be the germ at the origin 0 of a complex analytic function,
and suppose that £(0) = 0 and that the origin is an isolated critical point
of . There is an ¢ > 0 such that £~ * (0) intersects all spheres of radius g
about 0 transversally for 0 < ¢ <e. (See Section 12.) For t € C, let

V.=f"'®nD;

where D? is the closed disk of radius ¢ about 0. The function f(x, y, z) takes
of af

the constant value fon V,, so —dx + —~dy + —dz =0 there. Hence a

. ox dy 0z |
nowhere-vanishing holomorphic two-form @, on ¥, may be defined by the
equivalent expressions

dy Adz dz Adx  dx Ady
), = ] =
" 0f/ox of|dy ofoz °

Characterization A7. The integral [, wo A @, is finite.

Note that the form w, A @, takes positive real values. The equivalence
of Characterizations A2 and A7 is due to Laufer, and follows easily from
his expression for the geometric genus in terms of forms [Laufer 2, Corol-
lary 3.6].

A different formulation of this characterization is due to E. Looijenga
‘funpublished): Let 4 (r) = {tre C: ¢t < r}, let

X =f"'(4()) DS
nd let vol (X (r)) be its volume in C>.
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Characterization AT'.  lim r~? vol (X (r)) is finite.

r—-0

Let w = dx A dy A dz, and note that w A @ is 8/i times the volume
form of C?. Characterizations A7 and A7 are equivalent since

o .
lim  vol (X (1)) = lim — | @ A @

r—0 ) r->0 %
o N
=:}‘1_I)I;W (J‘ (Dt/\wt)dt/\dt,
but since Ay Ve
f (%) dt A dt = vol(4(r)) = 27”2',
4 (r)

the above limit equals

\-

B. NINE CHARACTERIZATIONS OF SIMPLE CRITICAL POINTS

We switch our attention from the analytic set defined by the zero locus
of an analytic function f (x, y, z) to the function itself and the nature of its
critical point. We also generalize to functions Sz, ...s z,) of an arbitrary
number of variables. The characterizations in the following theorem will
start in Section 9.

THEOREM B.. Let f(zy, ..., z,) With n >1 be the germ at the origin 0 | |
of a complex analytic fuﬁction, and suppose further that f(0) = 0 and that 0
is an isolated critical point of f. Then Characterizations Bl through B9 are
- equivalent. ‘

8. THE CLASSIFICATION OF RIGHT EQUIVALENCE CLASSES

Let @ be the set of germs f at the origin 0 of domplex analytic functions
on C***, (In other words, @ is just the ring C {z,, ..., z,} of convergent
power series.) The ring @ is local with maximal ideal ‘

m = {fe0:f(0) = 0}.
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