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FIFTEEN CHARACTERIZATIONS OF RATIONAL
DOUBLE POINTS AND SIMPLE CRITICAL POINTS

by Alan H. Durfee x)

Rational double points of algebraic surfaces and simple critical points
of complex analytic functions in several variables can be characterized in

many ways, all of which involve some form of finiteness. These characterizations

center on a list of polynomials (the simplest of which is xk + y2 + z2),

the Dvnkin diagrams Ak, Dh and Ek, and the finite subgroups of the group
of unit quaternions S 3 (Table 1).

This paper, which is expository in nature, is divided into two main
sections. The first, Part A, consists of seven characterizations (numbered Al
through A7) of rational double points drawn from the work of algebraic

geometers, among them Artîn, Brieskorn, Du Val, Kirby and. Laufer. A
singularity of a complex analytic germ in C3 is a rational double point if
a certain analytic cohomology group calculated from its resolution vanishes.

It is then shown that the minimal resolution of this singularity must
correspond to one of the Dynkin diagrams listed above and that the germ must
be isomorphic to the zero locus of one of the germs listed in column 1 of
Table 1. In terms of the method of resolution, these singularities are
absolutely isolated double points. They are also quotient singularities and
have finite local fundamental group. In addition, a limit involving volumes
must be finite. The introduction to [Du Val 3] gives an historical account of
the rational double points.

Part B contains nine characterizations (numbered B1 through B9) of
simple critical points of complex analytic functions in several variables.
These characterizations, the work of A'Campo, Arnold, Saito, Tjurina
and others, involve the space of moduli of all germs, the quadratic form
on the Milnor fiber, the monodromy group, the minimum number of
critical values of a nearby Morse function, and the weights of weighted
homogeneous polynomials. Parts A and B together present a total of

l) Research partially supported by National Science Foundation grants MPS72-
05065 A03 and MCS76-08910 A01.
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fifteen characterizations, since Characterization Al coincides with
Characterization B2.

Most of the characterizations of Part B are shown to be equivalent to
Characterization Bl. Other links between the two sets of characterizations

are provided by Theorem 12.2, which shows that Characterizations A2 and
B5 are equivalent, and a recent result (Theorem 11.1) partially connecting
Characterizations A2 and B3. Part B also contains a summary of pertinent
work of Mather and Arnold.

There are two appendices. The first gives nine characterizations of
simple elliptic singularities and almost-simple critical points. They are the

next most reasonable class of singularities after rational double points, and

can be characterized as being "infinite but not too infinite". All remaining
singularities are "very infinite" in various senses. The second appendix
contains Looijenga's proof that the monodromy group of the minimal
hyperbolic germs has exponential growth.

This paper is an expanded version of a series of lectures given at the

University of Maryland in the spring of 1976, and I thank the department
of mathematics for its hospitality. The lectures were inspired by an
unpublished talk given by E. Brieskorn at the American Mathematical Society
Summer Institute in Algebraic Geometry in Areata (1974). I also thank
E. Looijenga and J. Wahl for helpful comments.

A. Seven characterizations of rational double points

Theorem A. Let f (x, y, z) be the germ at the origin 0 of a complex

analytic function, and suppose that /(0) 0 and that the origin is an

isolated critical point of f Then characterizations Al through Ä7 (which

are listed below) are equivalent.

1. Complex analytic spaces

Let V be the germ at v of a normal two-dimensional complex analytic

space with a singularity at v. (The definitions of these terms can be found

in [Laufer 1].) For example, Vcould be/~1 (0), where/is as in the hypotheses

of Theorem A. Conversely, if V is embedded m C3 with v the origin, there

is a germ/as above such that V is isomorphic to/-1 (0) [Gunning and

Rossi, p. 113]. The singularity is isolated since L is normal. Two such
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germs V and W embedded in Cn at the origin are isomorphic if there is a

germ of an analytic automorphism of Cn fixing the origin and taking V

to W.

Characterization Al. The analytic set/_1(0) is isomorphic to the

zero locus of one of the functions listed in column 1 of Table 1.

2. Rational singularities

A resolution of a germ of a normal surface singularity V as above is a

complex analytic manifold M and an analytic map % : M - V that is

surjective and proper (compact fibers) such that its restriction to

M - 7i~1 (v) is an analytic isomorphism, and M — %~x (v) is dense in M.

Resolutions exist, and can be computed with a certain amount of effort.

The article [Lipman 2] contains a general discussion of resolutions, and

[Laufer 1] and [Hirzebruch, Neumann, and Koh, §9] give a detailed method

with examples.

Among all resolutions there is a minimal resolution n : M -> V that has

the following universal mapping property: Given any other resolution
: M' V, there is a unique map p: M' M with %' n op.
The geometric genus p of V is the dimension of the complex vector space

H1 (M, (9m), where M is any resolution of V, and 0M is the sheaf of holo-

morphic functions on M [Artin; Wagreich 1, §1.4; Brieskorn 2; Laufer 2].

(V is assumed Stein.) This number is finite, and independent of the choice

of resolution. It may alternately be defined as the dimension of the stalk

at the origin of the sheaf R17t# 0M on V. The idea behind this definition is

that M is a collection of "thickened" curves, and that the genus of a curve X
is the dimension of H1 (X, (9X). For example, H1 (M, &M) 0 if M is

the total space of a line bundle over a curve of genus zero. On the other

hand, dim H1 (M, 0M) k(k~ 1) (k- 2)/6 if M is a line bundle of Chern
class —k over a curve of genus (k—l)(k — 2)/2 (the minimal resolution
of/ (x, y, z) xk + yk + zk). In terms of V alone, p is the dimension of
the space of holomorphic two-forms on V — v divided by square-integrable
forms [Laufer 2, Theorem 3.4]. Another formula forp in terms of topological
invariants of the resolution M and the nearby fiber F (see §11) is given in
[Laufer 6].

The analytic set V has a rational singularity if p 0. A rational singularity

embeds in codimension 1 if and only if it is a double point (its local
ring is of multiplicity two) [Artin, Corollary 6].
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Characterization A2. The singularity of/ 1
(0) is rational.

Characterizations Al and A2 will both be shown equivalent to
Characterization A3.

3. Exceptional sets

Let V be as above, and let n : M -» V be a resolution of V. The exceptional

set E 71-1 (v) is compact, one-dimensional, and connected, and
hence is a union of irreducible complex curves Eu ...,ES. It is possible to
arrange that the Et are non-singular, the intersection of Et and Ej is transverse

for i j9 and no three Et meet at a point. Such a resolution is called
good. If, in addition, the intersection of Et and Ej is empty or one point,
the resolution is very good; this is possible to arrange as well.

Suppose that the resolution is good. Let Et • Ej equal the number of
points of intersection of Et and Ej if i =£ j (always a non-negative integer),
or the first Chern class of the normal bundle to Et evaluated on the
orientation class of Et if i j (the self-intersection of Et). The matrix {Et • Ej}
is called the intersection matrix of the resolution. It is proved in [Du Val 2]
(see also [Mumford; Laufer 1, p. 49]) that this matrix is negative definite.
Conversely, given a collection of curves E u Es in a two-
dimensional manifold M with negative definite intersection matrix
{Et • Ej}, a theorem of Grauert says that the quotient space M\E has a

normal complex structure and that the projection map M -» M/E is analytic
[Laufer 1, p. 60].

Characterization A3. The minimal resolution of /_1 (0) is very good,
and its exceptional set consists of curves of genus 0 and self-intersection - 2.

The equivalence of Characterizations A2 and A3 is proved in [Du Val 1],

and [Artin]. The following facts are needed:

(i) Let M ^ V be a resolution of a normal singularity V as above.
There is a certain unique non-zero divisor Z on M with
nt > 0 called the fundamental cycle, and it is shown that the singularity

of V is rational if and only if the analytic Euler characteristic
X(Z) of Z is 1 (that is, the arithmetic genus of Z is 0) [Artin,
Theorem 3]. It is easy to see that the support of Z is the whole
exceptional set.of E.

(ii) Any resolution of a rational singularity V is very good, and the

curves in the exceptional set are of genus zero [Brieskorn 2,

Lemma 1.3].
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(iii) A rational singularity Vembedsin codimension one if and only if
it is a double point, which is true if and only if —2 [Artin,

Corollary 6].

(A2) => (A3) :We only need show E) -2 for all Certainly

E] < -2, since if E] -1 the resolution could be contracted byCastel-

nuovo's criterion, and E2^0 would contradict the fact that the matrix

[Ei Ej) is negative definite. Let K be the canonical class of M. (This exists

since Fis Gorenstein; see for instance [Durfee 2].) The adjunction formula

-E,-K E] + 2then shows that E0 for each /. The Riemann-

Roch Theorem y(Z) — — (Z 2 + Z • K)impliesthat Z • 0. Thus

0 Z • K >(El+... +ES)K>EiK>0.Hence 0 for all so

again by the adjunction formula, Ej -2.

(A3) => (A2) : The adjunction formula implies that 0 for
all i;since the matrix {£j • Ej) is negative definite, 0. Thus y_ fZ)

- Z2 by the Riemann-Roch Theorem. Since y_ (Z) < 1 and Z2 < 0
2

(again since {Et Ej) is negative definite), y (Z) must be 1 and Z2 must

be — 2. This completes the proof.
Now, exactly what exceptional sets satisfy Characterization A3? First

some algebra. It is possible to associate a weighted graph to any symmetric

integral bilinear form < > on a free module with basis eu es satisfying

(eb e/) >0 for i#j:Thevertices of the graph are vu two vertices

vj and Vj are joined by <e;, e/) edges, and the vertex v{ is weighted by the

integer <e;, e,-). Conversely, a weighted graph defines such a bilinear form.
Let Tp q r be the weighted graph

P_

• • • * • • •

'
r r

.here p, q, and r are positive integers, and all vertices are weighted by
-2.
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Lemma 3.1[Hirzebruch 2, p. 217]. The only connected graphs weighted
by —2 and whose associated bilinear form is negative definite are of type
Tp.q.n where p, q, and rare positive integers satisfying p~1 + + r~l
> 1.

Proof, (a) If the bilinear form associated to a graph is negative definite,
so is the bilinear form associated to any subgraph.

(b) The graph (s> 2)

where all vertices el5es are weighted by —2, is not negative definite,
since (et + ...+es)2 0.

(c) The graph

where all vertices are weighted by - 2, is not negative definite, since
(2<?1 + ...+2es+/1 + ...+/4)2 0.

Thus the graph must be of the form TPA>r. An elementary argument
shows that the bilinear form of Tpqp. is isomorphic over the rationals to
the direct sum of a negative definite form and the one-dimensional form
<1 ~ P_1 ~ 1 - Hence TPti>r is negative definite if and only if
p~1 + <7

~1 + r~1 >1. This proves the lemma.
The only triples of positive integers (p, q, r) satisfying p~1 + q'1

+ r_1 > 1 are of course just (1,1, rfor> 1, (2, 2, r) for >2,
(2, 3, 3), (2, 3, 4), and (2, 3, 5).

The dual graph ofa resolution ofa singularity is defined to be the weighted
graph associated to the intersection matrix of the resolution. Applying the
above facts, we see that Characterization A3 is equivalent to:

Characterization A3'. The minimal resolution of f~1 (0) is listed in
column (3) of Table 1.

Next we show that Characterization Al and A3 are equivalent.
Characterization Al implies Characterization A3 since the singularities of the
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functions / listed in column 1 of Table 1 have minimal resolutions as in

column 3. (I believe that this first appeared in [Hirzebruch l].j The converse

follows since the singularities listed are taut [Brieskorn 2; Tjurina 3;

Laufer 4]. (Two resolutions n: M -» V and n': M' -> V are topologically

equivalent if their exceptional sets are homeomorphic by a homeomorphism

preserving the self-intersection numbers. A singularity V is taut if any other

singularity with a good resolution topologically equivalent to a good

resolution of V is then isomorphic to V.)

The classification of rational double points has been generalized in
several ways: to rational triple points [Artin, p. 135], to elliptic singularities

[Wagreich 1], and to minimally elliptic singularities [Laufer 5], The Dynkin
diagrams Bn, C„, F4 and G2 occur when resolving singularities over non-

algebraically closed fields [Lipman 1]. There is also a relation with simple

complex Lie groups [Brieskorn 3],

4. Absolutely isolated double points

There are at least three methods of resolving the singularity of the germ
of a normal two-dimensional complex space V. The first method is one of
local uniformization; this is originally due to Jung, and is described in
detail in [Laufer 1], The second method, due to Zariski, is to alternately
blow up points and normalize. The third method (which generalizes to
higher dimensions), is to blow up points and non-singular curves.

The singularity of V is absolutely isolated if it may be resolved by blowing

up points alone, that is, it is not necessary to normalize or blow up curves.
For example, the singularity of the zero locus of/ (x, y, z) xk + yk + zk

is absolutely isolated, since it may be resolved by blowing up the origin once.
The singularity of V is a double point if its local ring is of multiplicity

two. If V is/ -1 (0), this is equivalent to the lowest non-zero homogeneous
term in the power series expansion of/being quadratic.

Characterization A4. The singularity of /_1(0) is an absolutely
isolated double point.

The equivalence of Characterizations Al and A4 was proved directly
in [Kirby]. Later, it was shown [Tjurina 2; Lipman 1] that all rational
singularities are absolutely isolated (thus showing Characterization A2
implies A4), and in [Brieskorn 1, Satz 1] that A4 implies A3.
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5. Quotient singularities

Let Ubea neighborhood of the origin 0 in C2 and let be a finite
group of analytic automorphisms of U fixing 0. The quotient space U/H
has the structure of a normal two-dimensional complex analytic space with
an isolated singularity, and the projection map U/H is analytic
[Cartan], An analytic space V is called a quotient singularity if there is a
and H as above such that Visisomorphic to U/H.

An important example of a quotient singularity is C2/G, where G is
some finite subgroup of GL (2, C). The space C is not just analytic, but
algebraic. For any finite subgroup G of GL (2, C), the ring of functions on
the algebraic variety C2/G is isomorphic to the subring of invariant
polynomials in GL (2, C). Hence to find C it suffices to find this subring of
invariant polynomials. Note that a finite subgroup 6 of GL (2, C) or
SL (2, C) is conjugate to a finite subgroup of U (2) or respectively,
since it is possible to choose an invariant Hermitian metric on C2. A
subgroup G c GL (2, C) is small if no ge Ghas 1 as an eigenvalue of
multiplicity one. [Prill, p. 380],

Proposition 5.1. Let V be the germ of a normal two-dimensional
complex analytic space. The following statements are equivalent.

(a) V is a quotient singularity.

(b) Visisomorphic to C2/G, for somefinite subgroup G of GL (2, C).
(c) V is isomorphic to C 2IG,forsome small finite subgroup GL (2, C).

Condition (a) implies condition (b) by the usual linearization argument
[Brieskorn 2, Lemma 2.2], It is shown in [Prill, p. 380] that condition (b)
implies condition (c). Obviously (c) implies (a). The following theorem is
also proved in [Prill]: Let Gand G'besmall finite subgroups, of GL (2, C).
Then the analytic spaces C 2IGand C 2/areisomorphic if and only if G
and G' are conjugate.

Characterization A5. The analytic space f~1(0) is a quotient singularity.

Since quotient singularities are rational [Brieskorn 2, p. 340],
Characterization A5 implies Characterization A2. The converse will follow in
round-about fashion.

Consider SU (2), which is of course isomorphic to the group S 3 of unit
quaternions. The finite subgroups of S 3 are the cyclic group and the inverse
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images of the finite subgroups of the rotation group SO (3) under the

double cover S3 -» SO (3); these groups are listed in column 5 of Table 1.

Proposition 5.2. Let G be a non-trivial finite subgroup of SU (2) as

listed in column 5 of Table 1. Then C2\G is isomorphic to f'1 (0), where f
is the corresponding polynomial in column 1.

In particular, for each polynomial/in column 1 of Table 1 the analytic

space /_1 (0) is isomorphic to a quotient singularity. This proposition is

proved by classical invariant theory. For the cyclic group it is easy: Let
G a SU (2) be the cyclic group of order k, generated byThe transformation
(u, v) -» (rju, rj'h) where rj is a primitive k-th root of unity. Then we claim
that C2/G is isomorphic to

V {(x, y,z)e C3 :xk yz}

Let p1 (u, v) uv, p2 (u, v) zA p3 (iu, v) vk, and let p (PuP2,p2)
define a map of C2 to C3. The image of p is exactly V. Since Pi(gu,gv)

Pi (;u, v) for all g in G, the map p induces a map p of C2/G to V. The

map p is easily seen to be injective, and thus is an isomorphism, since

C2/G and V are normal.
The proof for the other finite subgroups G of S 3 is similar, and may be

found in [Du Val 3] : The elements of G are listed, the subring R of C [u, z;]

of invariant polynomials is found to be generated by three homogeneous
polynomials Pi,p2>P3 of various degrees, and they satisfy exactly one
weighted homogeneous relation f{p\,p2^Pz) 0- It follows that C2/G is

isomorphic to the zero locus of /. Special cases of this proof go back to
[Klein]. It is also possible to give a simpler uniform proof using vertices,
edges, and faces when G is the commutator subgroup [H, H] of another
finite subgroup H of S 3 [Milnor 2, §4].

[Du Val 3, §30] gives a geometric description of the links of these

singularities as regular solids with opposite faces identified. (The link of a

germ V c C" at v is V intersected with a suitably small sphere about v.)
The finite subgroups of GL (2, C) are listed in [Du Val 3, §21] and the

corresponding quotient singularities are studied in [Brieskorn 2, p. 348].
The ring of invariant polynomials has been computed for the cyclic and
dihedral subgroups [Riemenschneider 1,2]. Generalizations of quotient
singularities and their relation to weighted homogeneous polynomials may
be found in [Milnor 2; Dolgachev].

Characterization A5'. The analytic space /_1(0) is isomorphic to
b2/G, where G is a finite subgroup of SU (2).
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Proposition 5.2 shows that characterizations A5' and Al are equivalent.
Clearly Characterization A5' implies A5; since A5 implies A2, they are all
equivalent.

Corollary 5.3. Let G be a small finite subgroup of GL (2, C). Then
G ^ SL (2, C) if and only if C2/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl
points out that it is also possible to prove it directly, using the following
two facts :

Fact 1. Let G be a small finite subgroup of GL (2, C). Then
G cz SL (2, C) if and only if the singularity of C2/G is Gorenstein.

This is a special case of [Watanabe]. A germ of a normal two-dimensional
complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let V be the germ at v of a two-dimensional rational singularity.

Then V is Gorenstein if and only if V embeds in codimension 1.

Proof Any singularity embedded in codimension one is Gorenstein.
Conversely, suppose V is Gorenstein. Let n: M F be the minimal resolution

of V, and let Ex u u Es %~x (v) be its exceptional set as in
Section 3. Since V is Gorenstein, there is a divisor K on M (the canonical
class) satisfying the adjunction formula. Furthermore K'Et >0 for all i
since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If
K < 0, then -K > 0, so arithmetic genus p of -K satisfies p(~K) <0
[Artin, Proposition 1]. On the other hand, p{~K) 1 - x{~K) 1 by
the Riemann-Roch Theorem, a contradiction. Hence K 0. Thus K • Et

0 for all z, so F is a double point and embeds in codimension one, as in
the proof that Characterization A3 implies Characterization'A2.

6. The local fundamental group

Let V be the germ of a normal two-dimensional complex analytic space
with an isolated singularity at v. Without loss of generality, we may assume
that F is a good neighborhood of v, that is, that there is a neighborhood
basis Vt of v in F such that each Ff - v is a deformation retract of F — v
[Prill]. The local fundamental group of F at v is then defined as 7^ (F-v).
This group is trivial if and only if F is nonsingular at v [Mumford].
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Proposition 5.1 (bis). The following statement is equivalent to those

listed above.

(d) The local fundamental group of V is finite.

It is shown in [Prill, p. 381; Brieskorn 2, p. 344] that conditions (a)

and (d) are equivalent.

Characterization A6. The local fundamental group off 1 (0) is finite.

Thus Characterizations A5 and A6 are equivalent.

There is an algorithm for computing the local fundamental group of V

from a resolution [Mumford], and singularities V with finite, nilpotent and

solvable local fundamental group have been classified [Brieskorn 2; Wag-

reich 2]. When Lis a complete intersection, this classification is particularly

simple [Durfee 2, Proposition 3.3].

7. Volume

Let/(x, y, z) be the germ at the origin 0 of a complex analytic function,
and suppose that/(0) 0 and that the origin is an isolated critical point

of/. There is an s > 0 such that/_1 (0) intersects all spheres of radius e'

about 0 transversally for 0 < e' < e. (See Section 12.) For teC, let

whereD\ is the closed disk of radius s about 0. The function/(x, takes

df df ^fthe constant value t on Vt9 so — dx + —- dy + —- dz 0 there. Hence a
dx dy dz

nowhere-vanishing holomorphic two-form cot on Vt may be defined by the

equivalent expressions

dy a dz dz a dx dx a dy

œ'dfldxdfldy

Characterization A7. The integral JFo co0 a cd0 is finite.
Note that the form co0 a cö0 takes positive real values. The equivalence

of Characterizations A2 and A7 is due to Laufer, and follows easily from
his expression for the geometric genus in terms of forms [Laufer 2, Corollary

3.6].

A different formulation of this characterization is due to E. Looijenga
{unpublished) : Let A (r) {t e C : t < rj, let

X(r) =f-1(A(r))nDt
nd let vol (X (r)) be its volume in C3.
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Characterization Allim r ~ 2 vol (X (r)) is finite.
r->0

Let co dx a dy a dz, and note that co a ö5 is 8/z times the volume
form of C3. Characterizations A7 and A7' are equivalent since

lim ~ vol (X (r)Y lim f
r-»o r2 V 7

r-.o 8r2 J
CO A CO

*r
I

*o 8r:

but since J(r) v'

— lim -^2 I 1 I A dt A

I
A (r)

the above limit equals

— J dt a dt vol(d (r)) 27cr2

if- A ©o

Vo

B. Nine characterizations of simple critical points

We switch our attention from the analytic set defined by the zero locus
of an analytic function f (x,y,z)to the function itself and the nature of its
critical point. We also generalize to functions / (z0,z„) of an arbitrary
number of variables. The characterizations in the following theorem will
start in Section 9.

Theorem B. Let f(z0,...,z„) with n 1 be the germ at the origin .0
ofa complex analytic function, and suppose further that f (0) - 0 and that 0
is an isolated critical point of f. Then Characterizations B1 through B9 are
equivalent.

8. The classification of right equivalence classes

Let (S be the set of germs/at the origin 0 of complex analytic functions
on Cn+1. (In other words, (9 is just the ring C {z0,z„} of convergent
power series.) The ring & is local with maximal ideal

m {/e<P:/(0) 0}.
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Let

Af-lll
\dz0'";'dz,

be the ideal in 6 generated by the partial derivatives of/
Lemma 8.1. A,germ/ in m has an isolated critical point at 0 if and only

if there is a k such that mk cz Af c= rrt.

Proof. The germ /has a critical point af 0 if and only if fem2, or
equivalently, Af cz m. If this critical point is isolated, then the origin is an
isolated zero of the functions df/dz0,dfjdzn. This is equivalent to saying
that the set of common zeros of all the functions in the ideal Af equals the
set of common zeros of the ideal rrt. By the Nullstellensatz, there exist
integers /0,..., ln such that zy e Af. Setting k (n+1) max {/0,..., /„}
gives mk cz Af. Conversely, if mk cz Af then the origin is an isolated critical
point. This proves the lemma.

Let J* be the set of all germs in 0 vanishing at the origin and with an
isolated critical point there. (This is the set of finitely-determined germs.)
The Milnor number of a germ/ e $F is.

H dimc (9/Af.

For a comprehensive discussion of \i, see [Orlik 2]. There are many ways
to compute this number, aside from the above formula [Milnor 1, §§7, 10;
A'Campo 1; Laufer 6]. The (right) codimension of/is /x — 1.

Two germs/and g in 0 are right equivalent (written/ ~ if there is a

germ h of a complex analytic automorphism of CM+1 fixing 0 with/ o h

g. The germs/and g are contact equivalent if there is an h as above such
that the ideal generated by/ o h in (9 is equal to the ideal generated by g.
This is equivalent to saying that the analytic sets/"1 (0) and g'1 (0) are
isomorphic. Note that right-equivalent germs are contact equivalent.

Mather, Arnold, and others have classified germs of low Milnor number
under right equivalence. The implicit function theorem shows, for example,
that if/(0) 0 but the derivative of/ does not vanish at 0, then/is right
equivalent to the projection (z0,..., zn) z0. If/(0) 0 and/has a non-
degenerate critical point at 0, then /(z0,..., zn) - z20 + + z2n by the
Morse lemma.

Recall that the k-jet of a germ/in 0 is its power series expansion up to
degree k. A germ fe 0 is k-determined if any germ with the same A:-jet
as / is right equivalent to / In particular, / is right equivalent to its own
<-jet. A germ is finitely determined if it is ^-determined for some k < oo.
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The fundamental lemmas used in the classification are as follows :

Lemma 8.2. If mk+1 a m2 Af then/is ^-determined.

For the proof, see [Arnold 1, Lemma 3.2; Zeeman, Theorem 2.9;
Siersma, p. 8]. Note that m/c_1 c= Af implies that mk + 1

cz m2 Af The
corank of / is defined as n + 1 minus the rank of the Hessian matrix
{(d2fldzidzj) (0)}. The proof of part (a) of the following lemma may
be found in [Arnold 1, Lemma 4.1 ; Siersma Lemma 3.2].

Splitting Lemma 8.3. (a) Let /(z0,..., zn) e & be of corank r + 1.

Then there is a g (z0,..., zr) e m3 such that

f(zo> •••> zn) ~ G (z0> •••, zr).+ z2r+ 1 + + z3

(b) Let g (z0, zr) and g' (z0, zr) e & n m3. If
Q Oo> •••> ^r) ^r +1 ••• "h -^/î ^ Q (z09 •••? "b + 1 "b ••• "b Zn

then

g (z05zr) - ^'(z0,..., zr).

The classification proceeds by low corank and low Milnor number.
A germ of corank 0 is right equivalent to Zq + + z^, a germ of corank 1

and Milnor number k > 1 is right equivalent to zk0+1 + z\ + + z3,

and so forth. The proofs are not hard [Arnold 1, Zeeman, Siersma].
Table 2, for instance, includes all right-equivalence classes of germs with
Milnor number g < 9.

9. Characterizations under right and contact equivalence

Characterization Bl. The germ/is right equivalent to one of the germs
in Table 2a.

Characterization B2. The germ / is contact equivalent to one of the

germs in Table 2a.

When n 2, Characterization B2 is the same as Characterization Al.
Clearly Characterization Bl implies Characterization B2. Since all the

germs in Table 2a are weighted homogeneous (§16), the converse follows
from the next lemma.

Lemma 9.1. Let g be a weighted homogeneous polynomial, and

suppose that a germ/ e is contact equivalent to g. Then /is right equivalent

to g.



— 145 —

Proof. To say that / is contact equivalent to g means that there is a

germ of an analytic isomorphism h \ (Cn+1, 0) -> (Cn+1, 0) and a function

u: Cn+1 -> C with u (0) ^ 0 such that / u • (g o h). Let h (h°,..., hn)

be the components of h, and suppose that g is weighted homogeneous with
weights (w0,..., wn). Then,

/(z0,..., zn) w(z0,zn) - g (h° (z0,zn),..., hn(z0,..., z„))

g((u(z0, ...,zn))1/wo h°(z0,...,zn),...,
(w(z0, ...,zn))1/w" hn (z0,...5 z;i)).

Hence/is right equivalent to g.

10. Degeneration

Let Jk be the set of &-jets of germs in (9. There is a projection of 0 to
Jk by mapping germs to their power series expansion truncated in degree k.
The ring (9 becomes a topological space by letting a basis of open sets be

inverse images of open sets in Jk, for all k.
The group of germs of analytic automorphisms fixing 0 acts on 09 and

the orbits of this action (right-equivalence orbits) are the right-equivalence
classes. Similarly, there is a contact equivalence group which acts on 0,
and the orbits of this action (contact-equivalence orbits) are the contact
equivalence classes [Mather, §2]. A right-equivalence orbit is always
contained in a contact-equivalence orbit; Lemma 9.1 says that the right-
equivalence orbit of a germ /in Table 2a or b equals its contact-equivalence
orbit.

A subset A of 6 is said to right (or contact) degenerate to a subset B
of (9 if the closure of the right (or contact) equivalence orbit of A contains B.
If A degenerates to B, then B simplifies to A (written A <- B). Right
degeneracy is also called adjacency. For example, when n 0, the germ Zq

right degenerates to the germ zl0 for k < /, since the one-parameter family
tz\ + (1 — t) zl0 is Zq when t 0, and is right-equivalent to z$ when t ^ 0.

All germs of low codimension can be arranged according to right
degeneracy in fascinating tables [Arnold 3; Siersma]. Table 3 lists some (but
not all) of the simplifications that occur. The following proposition is a
principal consequence of the work on degeneration.

Proposition 10.1.

(i) The germs in Table 2a right simplify only to each other.

(ii) The germs in Table 2b right simplify only to the germs in Table 2a.
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(iii) The germs in Table 2c right simplify only to the germs in Table 2b

and 2a.

(iv) A germ in not right equivalent to a germ in Table 2a, b, or c right
simplifies to a germ in Table 2c.

11. Simple germs and moduli

A gërm f e m is said to be right (or contact) simple if there is a
neighborhood of/ in m intersecting only finitely many right (or contact)
equivalence orbits. In the language of algebraic geometry, a germ / is contact

simple if and only if the versai deformation of/"1 (0) contains only finitely
many isomorphism classes of analytic spaces.

The germs in Table 2a are right and contact simple by Proposition 10.1.

The germs in Table 2b are not contact simple (and hence not right simple):

E6 is a family of cones over non-singular elliptic curves in CP2, En is a

family of four lines through the origin in C2, and E8 is a family of three

parabolas [Arnold 1; Siersma]. Note that the germs of Table 2c form one-
dimensional families under right equivalence, but all members of the

family are contact equivalent [Laufer 4; Siersma p. 54]. Clearly if a germ g

right simplifies to/ and / is not right simple, then g is not right simple ; the

same applies to contact equivalence.

Characterization B3. The germ / is right simple.

Characterization B4. The germ / is contact simple.
The equivalence of Characterizations B1 and B3 follows from

Proposition 10.1 and the above remarks [Arnold 1]. Characterization B3 implies
Characterization B4 by definition. Conversely, a contact simple germ /
which is not right simple right simplifies to a germ in Table 2b (by
Proposition 10.1), but these are not contact simple. Hence/must bp right simple.

The classification of simple germs has recently been extended to complete
intersections [Giusti]. The modality of a germ / is defined in [Arnold 3].

A right-simple germ is zero-modal; all right equivalence classes of 1 and

2-modal germs have been listed [Arnold 2, 3, 5]. Moduli of resolutions of
two-dimensional normal singularities are studied in [Laufer 3, 4]. The following

result provides a connection between Characterizations A2 and B3.

Theorem 11.1 [Randell]. For almost all germs f {x, y, z) (in the sense

of the Newton diagram), the geometric genus p of f~1 (0) is less than or

equal to the modality of f
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12. THE QUADRATIC FORM

Let/(z0,..., z„) be a germ with/(0) 0 and an isolated critical point
at 0 (that is, a germ in #"). There is an a > 0 such that /"1 (0) intersects all

spheres of radius a' about 0 transversally for 0 < a' < a. For suitably small
ô > 0, /"1 (<5') intersects the closed disk D^n+2 of radius a transversally
for all j <5' | < <5. Let

F =f-HS)nD?+z
be the Milnor fiber of/ [Milnor 1]. The set F is a smooth real 2«-manifold
with boundary whose dilfeomorphism type is independent of the choice

of a and ö. Furthermore, Fis (n— l)-connected, and the Milnor number g
of §7 is the rank of Hn (F). The Milnor number is zero if and only if the

germ / has a regular point at 0 [Milnor 1, Corollary 7.3]. The intersection

pairing of F is the integral bilinear form Hn (F) x Hn (F) -> Z defined

by sending (x, y) to (x'u yf) [F], where x' and y' in Hn (F, dF) are Lefschetz
duals to x and y, and [F] in H2n (F, dF) is the orientation class of F given
by the underlying complex structure. The intersection pairing is symmetric
if n is even, and skew symmetric if n is odd. For example, the germ
/(z0, zn) z% + -f z2 has Hn (F) a free cyclic group with generator e,
and (e, e) 2 (—1)"/2 or 0 according as n is even or odd. There are many
methods of computing the intersection pairing in special cases.

By a tensor product theorem [Gabrielov 1; Sakamoto], the Milnor
numbers of/(z0,..., zn) and/(z0,..., z„) + z2+1 + + z2m are equal. The
quadratic form of /(z0, zn) is defined to be the intersection pairing of
the germ /(z0,..., zn) + z2+1 + + z2m where m 2 (mod 4). This is

independent of the choice of m. For example, if n 0 (mod 4) then the
quadratic form of fis the negative of its intersection pairing ; all this follows
from the tensor product theorem. See also [Kauffmann and Neumann].

A germ/ topological^ degenerates to a germ g if there is an rj > 0 and
a family ht of germs for {teC:\t \ < 2rj} with hn <x /, h0 ~ g, and ht of
constant Milnor number for t # 0. Compare [Lê and Ramanujam]. Clearly
right degeneracy implies topological degeneracy.

Lemma 12.1 [Tjurina 1, Theorem 1]. If / topologically degenerates
to g, then there is an injection of Hn (Ff) into Hn (Fg) (where Ff is the
Milnor fiber off and Fg is the Milnor fiber of g), and this injection preserves
the intersection pairing. In particular, if g topologically degenerates to/as
well, then the intersection pairings off and g are isomorphic.
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Characterization B5.The quadratic form of/is negative definite.
The equivalence of Characterizations B1 and B5 is proved in [Tjurina 1],

By explicit computation the quadratic forms of the germs in Table 2a are
shown to be negative definite, and those of Table 2b are shown to be
negative semi-definite. (In fact, the quadratic form of a germ in Table 2a
is isomorphic to the intersection pairing of its minimal resolution, and the

quadratic form of a germ of type EkinTable 2b is isomorphic to the quadratic

form of Ekplusa two-dimensional zero form.) The result then follows
from Proposition 10.1 and Lemma 12.1. When 2, the Milnor fiber Tis
in fact difleomorphic to the minimal resolution M of/-1 (0), since the
singularity of/-1 (0) is an absolutely isolated double point [Brieskorn 1,
Theorem 4; Tjurina 1, Lemma 1],

When n2, the equivalence of Characterizations A2 and B5 follows
from the following result [Durfee 2, Proposition 3.1],

Theorem 12.2. Twice the geometric genus p of (0) equals the
number ofpositive plus the number of zero diagonal elements in a
ization of the intersection pairing over the real numbers.

The classification of germs according to signature of the quadratic
form has been extended in [Arnold 3]; see also [Durfee 2, Proposition 3.3],

13. Nearby Morse functions

A deformation of a germ fe &is a germ C"+1 x C -> C with
g (z, 0) /(z). Choose s and Ô for/as in §11. Then choose >0 such
that for all |*| <,, and I 5'I <3, the set {zeC"+1:g t) Ô'} intersects

Sf+1 transversally and the critical values of g t) for fixed t are
less than <5 in absolute value. A germ / is a nearby Morse function to/if/has only non-degenerate critical points in D]n+2 and there is a deformation
g and a t0with| t0|< gsuch that / (z) (z, t0).

Characterization B6. There is a nearby Morse function to / with one
or two critical values.

In fact, the nearby Morse function has one critical value if and only
if/ is right equivalent to A2,sincethe quadratic form diagram is connected
(§14). This surprising characterization is in [A'Campo 211], where it is
shown that Characterization B1 implies B6, and B6 implies B7 below.
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14. Vanishing cycles

Let/be a germ in SF9 and let / be a nearby Morse function with jll distinct
critical values tu in the disk of radius ö about 0 in C. A path oq in
D] ~~ •••• from ^ to U determines (up to sign) a vanishing cycle öt

in Hn (F). The self-intersection (8i9 ôt) is 2 (-1)"/2 or 0 according as n is

even or odd. Choose paths al5..., ocß in Dj — {tu tß} from <5 to tl9 tß

respectively, such that, the union of the images of the paths is a deformation
retract of Dj ; then the corresponding vanishing cycles öl9..., öß are a basis

of Hn (F) [Brieskorn 4, Appendix]. The basis öi9 öß is called an. ordered

(or distinguished) basis of vanishing cycles if tl9 tß are ordered so that the

loop going once counter-clockwise around the boundary of D\ is homo-
topic in n1 (Dl - {tl9 tß}9 S) to the product ß1 * * ßß, where ßt is
the loop going out oct almost to th around tt counter-clockwise, and back
along at. References for this are [Gabrielov 1, Lamotke, Durfee 1].

Choose an ordered basis of vanishing cycles öl9 ...,öß for the
intersection pairing off (z0,..., zn) + z%+l + + z2, where m 2 (mod 4)
The quadratic form diagram of / with respect to the basis öl9 ...,öß has
vertices vu vß and edges from vt to pj if (ôb ôj) # 0, weighted by (ôi9 ôj)
if (ôi9 ôj) # L This diagram is connected [Lazzeri; Gabrielov 2]. It determines

all the topological information in the singularity if n ^ 2 [Durfee 1].
There are a number of methods of computing these diagrams [A'Campo 21;
Gabrielov 3; Gusein-Zade]. The quadratic form diagrams of the germs of
Table 2 are listed in column 5. Lemma 12.1 can be strengthened to show
that if/ topologically degenerates to g, then some quadratic form diagram
for / is a subdiagram of some quadratic form diagram for g [Siersma,
p. 82].

Characterization B7. There is an ordered basis of vanishing cycles
for/ such that the quadratic form diagram is a (weighted) tree.

It is shown in [A'Campo 211] that Characterizations B1 and B7 are
equivalent. In fact, the quadratic form diagrams for the germs in Table 2a
are the same as the graph of their minimal resolutions (column 3 of
Table 1).

15. The monodromy group

Let/be a germ in &9 and as above choose an ordered basis 819..., Sß of
vanishing cycles for Hm (F), where F is the Milnor fiber of

/(z0,..., z„) T- zn+1 4" + zm

L'Enseignement mathém., t. XXV, fasc. 1-2. 11
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with m ~ 2 (mod 4). The Picard-Lefshetz automorphisms T{ of Hm (F)
for i 1, fi are defined by

Tt (x) x + (<$>, x) <5f.

Another way of writing r;is
T \oX)

sTi (x) x — 2 <5,

OM;) '

which shows that Ttis a reflection in <3; [Lamotke],
The monodromy group of/is the subgroup of the automorphism group

°f Hm F)generated by Tu Tß. This group depends only on f since it
may also be defined as a representation of the braid group of /,which is
the fundamental group of the complement of the bifurcation diagram in
the base space of the versai unfolding of/[Arnold 3, §2.8], (Here is a direct
proof that the monodromy group of / is independent of the choice of
nearby Morse function / and paths alsa„: The set D\ - {tutß) is
the base space of a fiber bundle with fiber so 711 (D2ö - {tu tß}, Ô)

acts on Hm(F).Theimage of // in Aut Hm (F) is since ßu 1,
generate nuthemonodromy group is the image of n, in Aut Hm (F). Thus
the monodromy group is independent of the choice of al5It is
independent of the choice of / since any two nearby Morse functions with y
distinct critical values can be joined by a family of such functions.)

Characterization B8. The monodromy group of/ is finite
Characterization B5 implies Characterization B8 since the

automorphism group of any positive definite integral lattice is finite. In fact,
the monodromy groups are precisely the Coxeter groups of the
corresponding quadratic form diagram. Conversely, [Gabrielov 3] shows that
if a germ / topological^ degenerates to a germ g, then the monodromy
group of/ is a quotient of a subgroup of the monodromy gro'up of p. Since
the monodromy groups of the germs in Table 2b are infinite [Gabrielov 1],

Proposition 10.1 shows that Characterization B8 implies Characterization

Bl.

16. Weighted homogeneous polynomials

A polynomial g(z0,...,z„)isweighted homogeneous if there are positive
rational numbers w0,..., w„ (the weights) such that g (z0,..., z„) may be
written as a sum of monomials z'0°... z'„n with + + ijw„ 1
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[Milnor 1, p. 75; Orlik and Wagreich]. Another way of saying this is that

if the variables zt are weighted by 1 jwb then g is homogeneous of degree one,

that is, g (21/w<>z0,..., X1/Wnzn) kg (z0,..., z„) for all complex numbers À.

All the germs in Table 1 are weighted homogeneous with weights as listed

in Column 7. These germs remain weighted homogeneous upon adding

squares of new variables, each weighted by 2. It is proved in [Saito 1,

Lemma 4.3] that the weights of a germ g are uniquely determined (up to

permutation) by the analytic isomorphism type of g"1 (0).

Characterization B9. The germ /_1(0) is isomorphic to g_1(0),
where g is a weighted homogeneous polynomial with weights wt satisfying
wö1 + + w'1 > n/2.

The equivalence of Characterizations B2 and B9 is proved in [Saito 2,

Satz 2.11]. (The r there is wö1 + + vr"1.)

Appendix I

Nine Characterizations of Almost-Simple Critical Points
(Simple Elliptic Singularities)

Almost-simple critical points can also be characterized in several ways.
The nine characterizations presented in this appendix are analogues of
some of those in the main text.

Theorem C. Let f(z0,..., zn) with n > 2 be the germ at the origin 0

ofa complex analytic function, and suppose further that f (0) 0 and that 0
is an isolated critical point. Then Characterizations CI through C9 are
equivalent.

Characterization CI. The germ / is right equivalent to one of the
germs in Table 2b.

Characterization C2. The germ / is contact equivalent to one of the
germs in Table 2b.

The equivalence of these characterizations follows from Proposition 9.1.
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A germ ferttis said to be right (or almost-simple if /is not
right (or contact) simple, but there is a neighborhood of/in m intersecting
only finitely many right (or contact) equivalence orbits of lower codimension
in m.

Characterization C3. The germ/ is right almost-simple.

Characterization C4. The germ/is contact almost-simple.
The equivalence of Characterizations CI and C3 was conjectured by

Milnor and is proved in [Arnold 3, §3.2.6] using Proposition 10.1. As for
simple germs, Characterizations C3 and C4 are also equivalent.

Characterization C5. The quadratic form of/ is not negative definite
but negative semi-definite.

The equivalence of Characterization CI and C5 proved in [Arnold 3]
using §11 and the fact that the quadratic forms of the germs in Table 2c
have one negative and one zero eigenvalue.

Characterization C6. The monodromy group of/ is not finite but has
polynomial growth.

For the notions of polynomial and exponential growth, see [Milnor 3],
This was conjectured by Milnor. It is shown in [Gabrielov 1] that the
monodromy groups of the germs / in Table 2b have polynomial growth.
A'Campo first proved that the monodromy groups of the germs in Table 2c
have exponential growth. In Appendix II we present another proof of this
fact due to Looijenga. Hence Characterizations CI and C6 are equivalent.

Characterization C7. Assume n2. Conjecture: The local
fundamental group off1(0) is not finite but has polynomial growth.

This was also conjectured by Milnor. It is shown in [Wagreich 2] that
the local fundamehtal groups of the germs in Table 2b are nilpotent, and
hence have polynomial growth. In fact, it is conjectured that if the germ
f(z0,zuz2) is not simple or almost-simple, then the local fundamental
group of/-1 (0) has exponential growth, and even contains a free non-
abelian subgroup of finite index. See also [Orlik 1],

Characterization C8. Assume n2. The exceptional set in the minimal

resolution of/-1 (0) is a nonsingular elliptic curve with -3
<-1.
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The equivalence of Characterizations C2 and C8 is proved in [Wag-

reich 2, p. 66; Saito 2, Theorem 1.9]. In fact, the zero loci of the germs E6,

E-j and E8 have minimal resolution as above with E2 — 3, —2 and — 1

respectively.

Characterization C9. The germ /_1(0) is isomorphic to g'1 (0),

where g is a weighted homogeneous polynomial with weights wt satisfying

wö1 + + w«
1 w/2.

The equivalence of Characterizations C2 and C9 is proved in [Saito 2,

Satz 2.11]. In fact, the germs in Table 2b have the following weights:

GERM WEIGHTS

Ps (3, 3, 3)

x9 (4,4)
J10 (3,6)

Appendix II

The Monodromy Groups of the Minimal Hyperbolic Germs

Proposition. The monodromy groups of the germs P9, Xi0, and Jlt
have exponential growth.

In this appendix, we present an (unpublished) proof of this proposition
due to E, Looijenga. In fact, we will show that these groups have PSL (2, Z)
as subquotient (quotient of a subgroup). We let 0 (V) denote the orthogonal
group of a Z- or R-module V equipped with a bilinear form.

Suppose G is a polyhedral graph whose edges are weighed by non-zero
integers. By convention, the weight 1 is omitted. Let LG denote the free
Z-module generated by the vertices vl9,..9vn of G. Define a symmetric
bilinear form on LG by setting (vi9 vt) -2, and (vb vf 0 if there
is no edge from vt to vj9 otherwise equal to the weight on this edge.
Conversely, given a symmetric integral bilinear form on a free module L
with basis al5..., an with the property that (ai5 cq) —2 for all /, one
associates a graph to it in the obvious way.
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For a eLG, let sa (reflection in a) be the isometry of LG defined by

(a, ß)
sa(ß) =ß-2)^{a(a, a)

for ß e Lg. The reflection group M (G) of the graph G is defined to be the

subgroup of 0 (Lg) generated by sai,

Example 1. Consider a reduced irreducible root system in a vector

space V. Let ocl9..., ocn be a collection of simple roots, let L be the free
Z-module spanned by the oti9 and let be the negative of an invariant
bilinear form [Serre, Chapter 5]. If (oq, oq) —2 for all z, then the

corresponding graph must be of type Ak, Dk, E6, En or E8. The reflection group
of these graphs equals the Weyl group, the group generated by reflections
in all the roots [Serre, p. V-16]. Furthermore, the reflection group together
with the generators sav san forms a Coxeter system [Bourbaki, p. 92],

(A Coxeter system is a group G, a collection of elements gl9 ...9gn and a

symmetric integral n x n matrix {m^} with mu 1 and 2 < m^ < oo

for i 7^ y, with the property that G is isomorphic to the free group with
generators gl9 ...9gn and relations (gb gj)mij 1, for all z, j.)

Example 2. The monodromy group of a germ / is the reflection group
of a quadratic form diagram for/ (Sections 13 and 14). When this diagram
is a tree (which is only possible for the simple germs), its reflection group
together with the generators Tl9..., Tß forms a Coxeter system. In general,
this reflection group is not a Coxeter system [A'Campo 2, II, p. 403].

Lemma [Gabrielov 3]. If the graph G' is a subgraph of the graph G,

then M (G') is a subquotient of 01 (G).

Proof. Let cq,..., am be a basis of LG> corresponding to the vertices

of G'9 let al9..., am be the corresponding elements in LG, and'extend this to
a basis al5..., am, am+1?..., a„ of LG corresponding to the vertices of G. The

map ai -> is an isometric embedding of LG> in LG. Let 01' be the

subgroup of M (G) generated by ^ai,..., sam; it has a presentation with these

generators and certain relations. Any relation among these sa. holds also

for sa. I LGr sa:. Thus 01* maps onto M (G*).

Fact. If a subquotient of a group G has exponential growth, then so

does G.

Proof ofProposition. 1. A quadratic form diagram for the germs

P9, X109 and J1± is given in column 5 of Table 2. These graphs contain a



subgraph of the form 7\3.4, T2A;5,andr2>3<7 respectively, where;

is the graph

i
Hence it suffices to show that the reflection groups of these graphs have

exponential growth.
Let r be the graph

a a ß

-•
with vertices corresponding to basis elements a, a, ß in Lr as indicated.
We claim that M (Tp>q>r) has M (T) as subquotient, for (jp, q, r) (3, 3, 4),

(2,4,5), and (2,3,7). Consider (for example) T3>3A, with vertices

corresponding to basis elements oq e It3)3)4 as indicated:

oc4 a5

-•
• a6

# a

Iß
This contains the graph E6. Let

OC — Oq + 2oC2 T" 3OC3 -f- 2(X4 + OC5 2,CCß E Lt2,3,4-

be the largest root of Ee [Bourbaki, p. 165]. Since all the roots of E6 are

the same length, (a, a) - - 2. The lattice spanned by a, a, and ß has

diagram T. The reflections sa and sß are in 01 (T3}34). We claim that s~ is
ir* ^ (T3,3,4) as well: The restriction | LE6 is in 0t (E6), since E6 is a root
system. Hence ,s~ | LE6 (^.(1) o o s?i(m)) J for some 1 <z (l),

/ (m)<6.
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Also, s~ and s«i(D°°s"i(m) are both the identity when restrictec
to the orthogonal complement of LE6 ® R in ® R. Thus s~

^i(i) ° — ° sxi(my and Si (T3>3 4) contains A proof similar to that
of the lemma then shows that m (T3t3A) has subquotient 01

3. Next we show that 01 (T)hassubquotient PSL (2, Z). This uses
[E. Artin, Chapter V] heavily.

Let V be the 3-dimensional real vector space Lr <g> R. The bilinear

form of rextendsto V.Thisform is indefinite since a + a has length 0.
Let 1

0' (P) {/ e 0 (V): det/ 1 and spinor norm of/equal to 1 R*2}.
Since Visindefinite, it is known [E. Artin, p. 200] that

(1) 0' (F) —^PSL(2,R).
Since PSL (2, R) contains PSL (2, Z) as a subgroup, the idea is to find
elements of 01 (T) c 0 CT) which are in 0' (F) and map to generators of
PSL (2, Z). The standard generators of PSL (2, Z) are

with relations S2 (ST)31. By inspection, it is found that the elements
s~ sß and sßsx. of 0 (L) satisfy (s~sß)2 (sßsx)3 1, and have determinant
equal to 1 and spirior norm equal to 1R*2. Therefore we would like to
choose the isomorphism (1) such that s maps to and

(sfis'J maps to S'1 (ST) T.
The isomorphism (1) is done in two steps. First, let D0 (V) be the

elements of the Clifford algebra of V of norm 1; then [E.-Artin, p. 199]

(2) A>(L)/{ ± 1}—-0'(F).
We do not need to know exactly what this isomorphism is, but only that

for elements v, winV regarded as a subspace of the Clifford algebra,
and v ow their product. Hence under the above isomorphisms

V O W -* svsw

(3)
1 ~

-a oai ^s~.a °a
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Secondly [E. Artin, p. 199],

(4) D0{V)!{±1} s PSL{2,R).

We examine this more closely. Let

A1 y/2(ct + <x+ßl2) A2 — &l\]2 9 A3 — ß I y]~2

Then Au A2, A3 is an orthogonal basis of F, and the matrix of with

respect to this basis is the diagonal matrix < + 1, —1, *~1>- Let C+ (V)
be the subspace of. the Clifford algebra of V spanned by the elements of
even grading; C+ (V) is generated by 1, iu i2, z3, where i1 A2 o A3,

i2 As o Au and i3 A1 oA2, and has multiplication table as in

[E. Artin, top of p. 200] with a — 1. The map

C+ (V) M (2, R)

(where M (2, R) is the algebra of all 2 x 2 matrices over R) defined by

/ 1 0\ / 0 - 1N

0 ij' 1 0.

-1 0\ / 0 -1N
0 1 )'— 1 Oy

is an isomorphism. (This is slightly different from the isomorphism of
[E. Artin, p. 200].), and the restriction of this map to D0 (V) gives the

isomorphism (4). Furthermore,

(5) ^ a o ß ix h> S i a o a 1 — ~ (zx + i3) T

under this isomorphism. Combining isomorphisms (2) and (4) gives
isomorphism (1), and (3) and (5) show that

s~ sß\-^ S s~sah+T

under isomorphism (1). Thus 01 (F) maps onto PSL (2, Z), and hence has

PSL (2, Z) as subquotient.

4. Finally, PSL (2, Z) is isomorphic to the free product (Z/2Z) * (Z/3Z)
[Serre, ch. 7; Lehner, p. 59], which has exponential growth.
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(5)
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Table 3

Simplification Table

Table 3 lists some (but not all) of the simplifications that occur among

the germs of Table 2.
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