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Remark 3.2.. There are more precise formulations. of Artin’s approxi-
mation theorem (due to Artin [1] in the algebraic case; and John Wavrik [17]
in the analytic case) which assert that for every positive integer « there is. a
positive integer B («) such that for each f > B («), every p-order formal
solution 7 (x) of £ (x, ») = 0 (i.e. 7 (x) such that f (x, 7 (x)) = 0 mod m’*1)
may be apijroximated to ofder o« by an algebraic or convergent solution.
The method of our proof of Theorem B also provides invariant versions of
these results. The one point worth noting is that for every positive integer
Y, there exists a positive mteger B(Y) such that if 77 7 (u (%)) is a f (y)-order
solution of

> hy(u(x),n)G;(x) =0
i=1

(we are using the above notation), then there exist ¢* (), k = 1, ..., m,
such that (7 (u), ¢ () is a y-order solution of :

hy(u,m) = 3 ¢“Hj), 1<j<t.
k=1 ,

This statement follows from a simple extension of a theorem of Chevalley
[14, 30.1].

4. A PROJECTION FORMULA

Let G be a compact Lie group and M = L? (G, dg) the space of complex-
‘valued functions on G which are square integrable with respect to the
normalized Haar measure dg. The mapping f — f7 from M into a space of
continuous matrix-valued functions on G, defined for each irreducible
complex representation T of G by the formula

ST = [6f (67 'W) T(g)dg
=T [ef (6™ T(g)dg,

where h e G, is a generalized Fourier transform [10, Section. 12] (cf. our -

oroof of Theorem B in the complex analytic case). The Peter-Weyl theorem
gives

S® = Tdim Tt fT (),
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where the sum is taken over all finite dimensional inequivalent irreducible
complex representations T. Moreover, the mapping 7, : M — M defined by

(rrf)(h) = dim T-tr f7 (h),

where /e G, is the projection onto the largest invariant subspace of M
whose irreducible invariant subspaces are all equivalent to the representation
space of T. o |

Now let G be a reductive algebraic group defined over a field k of
characteristic zero. A vector space M on which G acts linearly will be called
a G-module. We will obtain projection formulas similar to the above in the
following cases:

(a) M is a finite dimensional G-module;
(b) M = k [x] or k [[x]];
(©) M =k {x},withk = Ror C;

where, in cases (b) and (), x = (x, ..., x,) denotes a coordinate system in |
a finite dimensional G-module ¥, and M has the induced action of G.

If L, M are G-modules, then the space ML = End, (L, M) of k-linear
mappings A4:L — M is a G-module, with the action of G defined by
g+A4=gAdg~'. If L is an irreducible G-module, then F~ = End, (L, L)%
is a field (in general not commutative). It is clear that k is a subfield of FL,
and that the action of G on L commutes with the multiplication of elements
of L by elements of F~. |

We define a k-homomorphism

J : FX — End, (F%, FY)
by

JDW =i,
where A, u € FX, and let

tr, : End, (L, L) - k,
tI‘FL : Endk (FL, FL) -> k
be the trace homomorphisms. It is not difficult to check that
try () = mpiry, (J (D)

for all A € F%, where m;, is the dimension of L over F~.
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For each v* € End, «(L, k) and f eM, we denote byv* ® fe Endk (L, M)
the mapping-(v*® f) (w) = v* (w) fiweL. We also define a generalized
trace homomorphlsm f .

| Tr: EndFL (L, FL) — Endk (L k)
by the formula * | e
N (Tro#) ('w) = tronJ (0% (W),
where v# € EndFL (L FL) and we L.

In the following, E M W111 denote a Reynolds operator for a G-module M;
ie. Ey is an invariant prOJectlon operator from M onto M @ [13 Deﬁ-
nition 1.5]. ’ ‘

PROPOSITION 4.1. Suppos’e L is a finite dimensional irreducible G-
module. Let {v; 1} beabaszs for L over F-, and {v * L}

be its dual basis. We conszder one of the followmg G-modules M:

1=j=my,

(@) M is a finite dimensional G-module ;
(b) M = k [x] or k [[x]];
(© M =k{x},k =RorC.

e

(In the latter two cases, the action of G is induced by a linear action on the
space of coordinates x = (Xy, ..., X).) We define n, € End, (M, M) by

nL(f) =mp Yy EML(T“) L®f)(v1L)
Jj=1

where f eM. Then .

(D) =, is a pr0]ectlon Jrom M onto an invariant subspace whose irre-
ducible invariant subspaces are all equivalent to L ;

) for ea,ch f € M
= Z 7IL (f ) s
el

where the sum is taken over all finite dimensional iﬁequivalen,i irreducible
G-modules L (in cases (b) and (c) the sum converges in the Krull topology ) ;
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(3) if I is aninvariant ideal in M, in cases (b) and (c), then n; (f) el

and =~ ' \ : ‘
ML(Trv L®f)eEnd, (L, 1)

for all fel.

Remark 4.2. For each of the G-modules M of Proposition 4.1, there
is a unique Reynolds operator E 4> and the mapping M — E 4,1 18 functorial.

If M is finite dimensional, then this follows from the definition of “reductive”.
If M =k][x] or k[[x]] it follows from Cartier’s lemma [13, p. 25]. If
M = C {x} we define

EML(f) = th‘fdh,

where fe M" and H is a maximal compact subgroup of G. Finally if B
M = R{x}, we put E _;(f) = Re E(f) for fe M*, where E is the
Reynolds operator for the action of the complexification G¢ of G on

C @g M*, and Re: C ®g M* — M" is the mapping Re () = ~ (f+f).

N =

Remark 4.3. Proposition 4.1 provides an alternative proof of
Theorem B when char k = 0. Let 7 be the ideal in k [x] of an invariant
algebraic subset of k" (respectively the ideal in k {x} of a germ at O of an
invariant analytic subset of k", k = R or C). Then for each feI and
v” e End g (L, FL), we define a polynomial mapping (respectively a germ
at 0 of an analytic mapping)

| F; ,# : k" = End, (L,Kk)
by the formula

Fp oz (x) (W) = (B, (Trv” @ f) (W) (x)

where x ek’ and we L. Then F, ,» is equivariant and X < F ;’,1,# ©). B
We may now argue as in our proof of the algebraic case 2.3 of Theorem
B. We use the facts that (E L (Trv7% 1 ® f) (v, L)) (x) is a coordinate

function of F P and that 2, w; ( f) converges to f in the Krull
topology, to show that the ideal I coincides with the ideal in k [x]
(respectively k {x}) generated by the coordinate functions of all equiv- |

ariant polynomial mappings (respectively germs at 0 of equwanant
analytic mappings) F such that X ¢ F~1 (0).




" Proof of Proposition 4.1. 'We first: consider the case (a) that M is a
finite dimensional G—module We write M as a d1rect sum M = @; M, of.
G-submodules M;, where the sum . is taken over 1nequ1valent irreducible
G-submodules L, in such a way that each nonzero 1rreduc1ble G—submodulev
of M, is equivalent to L. Let f = X, f;, where f; € M;. It is enough to
prove that 7, f'=f;; in other words that 7 f, = 0 if L #1L, and

nfL = Jfoo B
The first condltlon follows from the fact that End, (L, L)® = 0. Using

the functorial property of the Reynolds operators, we reduce the second to
the case M = L;i.e.-we must prove n; f = f for all fe L. Since

my,
f = Z'U?é,L(f)'vj,L
‘ - J=1 v
it is enough to show that |
E, (Tro* @ f) = v* ()

for all feL and v* e End_ (L, FY).
For each f € FX, we deﬁne a homomorphism

: End, (L, L) > k

by the formula tr 8 (A) = try (8-A4), 4 € End, (L,L). Then tr,is G-mvarlant
so that

try OFE = trg.
By a direct computation, we also check that
tr; (Trv”* @ f) = tro J (v (ﬁ'f))..
Hence for each S e F-,
trg(mpE,p, (Tr v* ® f)) = my trg J (07 (B-f))

This implies that \ “

my E_, (Tt v#®f) - v* (),

because otherwise, letting f be the re01procal of mL Lk(Tr v# ® f ) _

V% (f) in FX, .we would have dimy L = tr; (id) = 0, contradicting char
k = 0. This completes the proof of Proposmon 4 I 1n the case (a).
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In the case M = k [x], it follows from the functorial property of the
AReynolds operators that 7y, (k [x].) = k [x], for all c e N. Hence properties
(1 and (2) of PI‘OpOS]thI‘l 4.1 follow from the finite dimensional case (a).
Moreover, if I is an invariant ideal in k [x], then 7 n k [x]. is an invariant
subspace of k [x]., and

I =vulnk[x],.

. ceN
' Therefore n; fe I and

E . (Trv? . ®f)e End, (L, I)

as required in property (c).

It remains to consider the cases M = k[[x]], and M = k {x} with
k = R, C. In each case let m be the maximal ideal and let M., ceN, be
the invariant subspace of M of polynomials of degree at most c. If fems,
then Trv* ® fe End, (L, m¢) for all v* e End oL (L, F), so that

7y, f € m®. Likewise if fe M, then aneM For each fe M and ceN, |
we write

f=Tf+RF,
where T¢ f e M, and R° fe m®"!. Then for all fe M and ce N,

Rif —mf = nERS) — m(REf) eme*,

so that 77 = Tr. :

For each c e N, let P, be the natural projection from M to its subspace
of homogeneous polynomials of degree c¢. Each fe M may be written
f =2 P.f Then ny o P, = P, o 7, for every ce N and every irreducible |
G-module L. Suppose that N is a nonzero irreducible G-submodule of
n, (M). Then either P,(N) = 0 or P,: N— P,(N) is an equivalence
of G-modules. Choose ¢ € N such that P, (N) # 0. Then N is equivalent
to P, (N) and P, (N) = n;, (P, (N)) < mn (M) is equivalent to L, by the-.
finite dimensional case (a). This completes the proof of property (1) for

M = k[[x]] or k {x}.
To obtain property (2), we let N(—1) = @ and let N (c), ce N, be the

set of all inequivalent ifreducible G-modules appearing in the decomposition
of M, as a direct sum of irreducible G-modules. Then for each ¢ e N,

F= Y mf =Rf— Y mRfemtt,

LeN (c) " LeN (c)




129 —

Since n. f = 0 if L ¢ U, N(c), then 2} 7, f converges to f in the Krull

topology. |
We finally con51der property (3) for M =k [[x]] or k {x}. Let 1 be an -

invariant ideal in M. Then I n M, is an invariant subspace of M,. It follows

that if f e I, then aneI + me* 1! for all ceN, so that n; fel by Krull’s

theorem [14, 16.7]. Moreover

End, (L,I) = n End (L, I+ m*Y).
ceN o

Let fel Writing f =-T¢f+ R°fand using the functorial property of the
Reynolds operators, we have

E,.(Tro} @ T°f)e End (L, InM,),

E, . (Tro} ®R°f) e Endy (L, nf+ 1
for all ce N. Since 7 + m**! = I n M, + m*', it follows that
E . (Trv% 1 ®f) e Endy (L, D).

This completes the proof of Proposition 4.1.
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