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Remark 3.2. There are more precise formulations of Artin's approximation

theorem (due to Artin [1] in the algebraic case, and John Wavrik [17]

in the analytic case) which assert that for every positive integer a there is a

positive integer ß (a) such that for each ß > ß (a), every ß-order formal
solution y (x) off (x, y) 0 (i.e. y (x) such that/ (x, y (x)) 0 mod mß+ *)

may be approximated to order a by an algebraic or convergent solution.
The method of our proof of Theorem B also provides invariant versions of
these results. The one point worth noting is that for every positive integer

y, there exists a positive integer ß (y) such that if fj (ju (x)) is a ß (y)-order
solution of -

t

X hj(u(x),f])Gj(x) 0

j i

(we are using the above notation), then there exist (w), k 1,..., m,
such that (fj (u), (f) (w)) is a y-order solution of

m

hj (u> rj)£ ^ h) (") >
1 < J < t.

k=l

This statement follows from a simple extension of a theorem of Chevalley
[14,30.1],

4. A PROJECTION FORMULA

Let G be a compact Lie group and M L2 (G, dg) the space of complex-
valued functions on G which are square integrable with respect to the
normalized Haar measure dg. The mapping/ fT from M into a space of
continuous matrix-valued functions on G, defined for each irreducible
complex representation T of Gby the formula

fT(h)Uf(9~1h)T(g)dg

T(h) •Jg/C^-1) T(g) dg

where heG, is a generalized Fourier transform [10, Section 12] (cf. our
proof of Theorem B in the complex analytic case). The Peter-Weyl theorem
gives

f{h) £dim T-tr/r(h),
T
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where the sum is taken over all finite dimensional inequivalent irreducible
complex representations T. Moreover, the mapping -* defined by

(7iTf)(h) dim T- trfT(h),
where h e G, is the projection onto the largest invariant subspace of M
whose irreducible invariant subspaces are all equivalent to the representation
space of T.

Now let G be a reductive algebraic group defined over a field k of
characteristic zero. A vector space M on which G acts linearly will be called
a G-module. We will obtain projection formulas similar to the above in the
following cases :

(a) Mis a finite dimensional G-module;

(b) Mk [x] or k [fx]] ;

(c) Mk {x}, with k R or C;

where, in cases (b) and (c), x (xl,..., xn) denotes a coordinate system in
a finite dimensional G-module V,andM has the induced action of G.

If L, M are G-modules, then the space M— Endk ÇL, M of k-linear
mappings A:L-> Mis a G-module, with the action of G defined by
g • A gAg"1. If L is an irreducible G-module, then Fr Endk (L, Lf

is a field (in general not commutative). It is clear that k is a subfield of FL,
and that the action of G on Lcommuteswith the multiplication of elements
of L by elements of FL.

We define a k-homomorphism

J : FL -> Endk (FL, FL)

by

A •/{,
where X, geFL,and let

trL : Endk (L, L) -> k,

trFL : Endk (FL, FL) -> k

be the trace homomorphisms. It is not difficult to check that

trL(2) mLtrvL(j(X))

for all X e F*1, where mL is the dimension ofL over I '
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For each v* è Endk(L, k) and/ e M, we denote by v* ® fe Endk (L, M)
the mapping (?;*®/) (w) v* (w) • /, weL. We also define a generalized

trace homomorphism

Tr: EndFL(L, FL)-> Endk (L, k)

by the formula \
(Tr»#)(w) trpL (w)),

where v*eEnd^.j, (L,FL)and we L.

In the following, EM will denote a Reynolds operator for a G-module M;
i.e. Em is an invariant projection operator from M onto MG [13,
Definition 1.5]. •

Proposition 4.1. Suppose L is a finite dimensional irreducible G-
module. Let {vjL} be a basisfor L over FL, and {vf r)U,Ljl ^j^mL J 5 1 J

be its dual basis. We consider one of the following G-modules M :

(a) M is a finite dimensional G-module ;

(b) M k [x] or k [[x]] ;

(c) M k {x}, k R or C.

(In the latter two cases, the action of G is induced by a linear action on the

space of coordinates x (xl5..., x).) We define nL e Endk (M, M) by

mL

Kl(J) mL£EML(Trv^L®f)(Vj±),
j= 1

where fe M. Then

(1) %L. is a projection from M onto an invariant subspace whose
irreducible invariant subspaces are all equivalent to L;

(2) for each feM.

/ 2X.CO,
L

where the sum is taken over all finite dimensional
G-modules L in cases (b) and (c) thesum converges in the Krull topology ;



— 126 —

(3) if I is an invariant ideal in M, in cases (b) and (c), then nL (/) e /
and

EML(TrvftL®f)eEadk(L,D
for all fel.

Remark 4.2. For each of the (/-modules M of Proposition 4.1, there
is a unique Reynolds operator EmL, and the mapping M -» EmL is functorial.

IfM is finite dimensional, then this follows from the definition of "reductive".
If M k [x] or k [[x]] it follows from Cartier's lemma [13, p. 25]. If
M C {x} we define

lah'fdh,
where f e ML and H is a maximal compact subgroup of G. Finally if
M R {x}, we put EmL(J) Re E (f) for f e ML, where E is the

Reynolds operator for the action of the complexification Gc of G on

C ®R Ml, and Re : C ®R ML ML is the mapping Re (/) ^ (/+/).

Remark 4.3. Proposition 4.1 provides an alternative proof of
Theorem B when char k 0. Let I be the ideal in k [x] of an invariant
algebraic subset of kn (respectively the ideal in k {x} of a germ at 0 of an
invariant analytic subset of kn, k R or C). Then for each fel and

v # e EndpL (L, FL), we define a polynomial mapping (respectively a germ

at 0 of an analytic mapping)

Ef,v# : kn -> Endk(L, k)

by the formula

Ff, v# 0) O) (EmL (Tiv* ®f) (w)) (x),

where .v e k" and weL. Then Ff v# is equivariant and X c. FJ I # (0).
We may now argue as in our proof of the algebraic case 2.3 of Theorem
B. We use the facts that (EmL (Tr v#j >L®/)(^*,l)) (X) is a coordinate

function of Ff>v#jL and that IL nL (/) converges to / in the Krull
topology, to show that the ideal I coincides with the ideal in k [x]
(respectively k {x}) generated by the coordinate functions of all equivariant

polynomial mappings (respectively germs at 0 of equivariant
analytic mappings) F such that X C F~1 (0).
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ProofofProposition 4.1. We first consider the case (a) that M is a

finite dimensional G-module. We write M as a direct sum M ®L ML of
G-submodules ML, where the sum is taken over inequivalent irreducible
G-submodules L, in such a way that each nonzero irreducible G-submodule

of Ml is equivalent to L. Let / ILfL, where fL e ML. It is enough to

prove that nLf y= fL; in other words that %LfL> 0 if L ^ L\ and

^l/L A-
The first condition follows from the fact that Endk (L, L')g 0. Using

the functorial property of the Reynolds operators, we reduce the second to
the case M L; i.e. we must prove nLf /for allfeL. Since

m L

f Z Vî,L(f)'Vj,L,
j= 1

it is enough to show that

mL • ElL (Trv# ®f) v# (/)
for all feL and v# e EndpL (L, FL).

For each ß e FL, we define a homomorphism

tr^ : Endk (L, L) -> k

by the formula tr^ (A) trL (Jß-A), A e Endk (L,L). Then tr^ is G-invariant,
so that

tvß o ElL tr^

By a direct computation, we also check that

tr„(Trv* ®f) trpL (v# (ß •/))
Hence for each ß e FL,

tri8 (mLELL (Tr v* ® /)) mt trpL (v* (ß •/))

tr<| »*(/).
This implies that

mLElL(Trv* ® /) v*(/)
because otherwise, letting /I be the reciprocal of mL ElL (Tr v* ® f -
v# (f)in Fl, we would have dimkL trL (id) 0, contradicting char
k 0. This completes the proof of Proposition 4.1 in the case (a).
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In the case M— k [.v], it follows from the functorial property of the
Reynolds operators that %L (k [x]c) c k [x]c for all ce N. Hence properties
(1) and (2) of Proposition 4.1 follow from the finite dimensional case (a).
Moreover, if/is an invariant ideal in k [x], then /n k fjc]c is an invariant
subspace of k [x]c, and

Iulnk [x]e.
Therefore %/e / and

V (Tr vf ,L®f) <= Endk (L, I)

as required in property (c).
It remains to consider the cases M k [[*]], and k {x} with

k R, C. In each case let m be the maximal ideal and let Mc, c e N, be
the invariant subspace of Mof polynomials of degree at most c. Iffemc,
then Tr v# ® feEndk (L,mc)forall v* e Endpt FL), so that
nLfemc. Likewise if / e Mc then nLfeMc. For each fe M and ceN,
we write

where TcfeMc and Rcf e mc+ K Then for all fe and c 6 N,

*1/ - nLf nl(Rcf) - nL(Rcf)emc+1,

so that
Voreach c e N, let Pc be the natural projection from M to its subspace

of homogeneous polynomials of degree c. Each fe may be written

f ~ ZcPcf-Then nL o PcPconL for every N and every irreducible
C-module L. Suppose that N is a nonzero irreducible G-submodule of
71l (-1-0- Then either PC(N) 0 or -» is an equivalence
of G-modules. Choose c e N such that Pc N) 0. Then N is equivalent
to Pc (N) and Pc (N nL (Pc (N)) <= nL (Mc) is equivalent to L, by the
finite dimensional case (a). This completes the proof of property (1) for
M k [[v]] or k {x}.

To obtain property (2), we let N (-1) 0 and let N (c), N, be the
set of all inequivalent irreducible G-modules appearing in the decomposition
of Mc as a direct sum of irreducible G-modules. Then for each c e N,

/- E %/=Rc/~ E ntR'fe me+1.
LeN (c) LeN (c)
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Since nLf 0 if L$uc IV (c), then IL itLf converges to / in the Krull
topology.

We finally consider property (3) for k [[y]] or k {x}. Let be an

invariant ideal in M. Then InMcisan invariant subspace of It follows

that if/ e I,then nLfe I + mc+1 for all c e N, so that nLf by Krull's
theorem [14, 16.7]. Moreover

Endk(L, I) n Endk(L,/+ mc+1)
ceN

Let /el. Writing/ Tc f + Rc f and using the functorial property of the

Reynolds operators, we have

EmL (Tr vf, L 0 Tcf) e Endk (L, In Mc),

EMLÇYrvf iL®Rcf) e Endk(L,mc+1)

for all ceN.Since I + mc+1 In Mc+ mc+1, it follows that

£ML(Tr^,t®/)6Endk(L,J).

This completes the proof of Proposition 4.1.
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