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Suppose that G acts linearly on ¥ = R”, and that X is a germ at 0 of
an invariant real analytic subset of ¥. The complexification X of X is a
germ at 0 of a complex analytic subset of ¥¢ = C". The complexification
X€ is invariant under the induced action of G¢ on V.

By the complex analytic case 2.1, there is a linear action of G on a
finite dimensional complex vector space W, and a germ H at 0 of a G°-
equivariant holomorphic mapping of some neighborhood of 0 € V¢ into W,
such that X¢ = H ™1 (0). |

Let Y be W with its underlying real structure. Then F = H | V:V-o>Y
is G-equivariant, and X = F~1 (0).

2.3. The algebraic case. Our ground field k is now arbitrary. Let G be
a reductive algebraic group acting linearly on ¥V = k", and let X be an
invariant algebraic subset of V. Let I be the ideal in k [x] of polynomials
which vanish on X, and k [x], be the subspace of k [x] of polynomials of
degree at most ¢. Then I and k [x], are invariant subsets of k [x].

For each c e N, we define a polynomial mapping

F.: V - Endy (Ink[x],, k)

by the formula F, (x) (k) = h (x), where x € V and he I n k [x],. Then F, is
equivariant and X < F ! (0) for all c € N.

We consider the ideal J in k [x] generated by the coordinate functions
of all equivariant polynomial mappings defined on ¥, which vanish on X.
Since J is finitely generated, it suffices to show that J = I. Clearly J < I.
On the other hand, suppose heInk [x], & # 0. Let {e;};_;_, be a
basis of the vector space I Nk [x], such that e, = . Then % is the
first coordinate function of the equivariant mapping F,, with respect to
the dual basis {e;},_;, in Endy (Ink [x], k). Since X <= F_'(0),
then heJ. Hence J = I as required.

This case of Theorem B may also be obtained from a lemma of Cartier
[13, p. 25].

3. PROOF OF THEOREM A

The formal power series j (x) e k [ [x]]? define a local k-homomorphism
¢:k {x,y} = k[[x]] (or a k-homomorphism ¢: k [x, y] = k [[x]] in the
algebraic case) by substitution: 4 (x, y) — & (x, j (x)).
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Let X be the germ at 0 in ¥ x W = K"*? of a closed analytic subset
(or the closed algebraic subset of ¥ X W in the algebraic case) defined by
the prime ideal ker ¢. It follows from Artin’s approximation theorem that
ker ¢ satisfies the nullstellensatz (whether or not k is algebraically closed).
In other words, if 4 (x, y) vanishes on X, then % (x, y) € ker ¢. In fact
if & vanishes on X, then for any ce N we can find a convergent series
solution y (x) of the system of equations determined by the ideal ker ¢,
such that y(x) = y(x) mod m®. Then/ (x,y(x)) = 0 and A (x,y(x))
= (x, y (x)) mod m°. Hence 5 € ker ¢.

It follows that Theorem B reduces Theorem A to the case of an equi-
variant equation. We may assume that f(x,y)ek {x, y}? (respectively
S (x,y)ek[x, y]Y) is the germ of an equivariant analytic mapping (re-
spectively the equivariant polynomial mapping) given by Theorem B for
the invariant analytic set germ (respectively algebraic set) X.

From now on, then, we assume that G acts linearly on V' = k", W = k?
and Y = k% and that f (x, ) is a germ of an equivariant analytic mapping
(or an equivariant polynomial mapping in the algebraic case).

Since G is reductive, then k- [x]¢ is finitely generated (as a k-algebra)
by homogeneous polynomials u, (x), ..., u, (x) e k [x]® [13, Theorem 1.1].
Hence the homomorphisms ' |

u*: k[u] - k[x]%,
@*: k [[u]] > k[[x]]°

defined by substitution A (uy, ..., u,) = h (uy (%), ooy 1, (x)) are surjective.
If k = R or C, then the induced homomorphism

u*:k{u} »k{x}¢

is surjec’rlve by a result of Luna [11]. . |
In the remainder of the proof we consider only the analytic case. The

proof of the algebraic case is identical, if we replace the analytic version of

Artm s approximation theorem by the algebraic version. ‘

Remark 3.1. If G acts trivially on ¥, ie. f;(x,y)ek{x,y}%
j =1, ..., q, then our theorem follows immediately. In fact let I = ker u*.

Then ker #* = I-k[[u]] and ker u* = I-k {u} (the former. equality
follows by expressing a power series in k [ [#]] as a sum of weighted homo-
geneous polynomials, weighted by the degrees of the u;, and the latter then
by Artin’s theorem). Suppose that F, (x), ..., F, (x) generate the module of
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equivariant polynomial ‘mappings of V. into W over the ring k [x]® of
invariant polynomials on V. Since f (x, 5, nF, (x)) is invariant in
(x,n), where G acts trivially on the Vanables n= (115 ---» 115), then there

exists ek [u, n)4, such that - - :

‘f(xa > n F (x)> ‘=v h (u (), ’7) :
i=1

If y (x) =

i

ﬁ,: (u (x)) F; (x) is a formal soluti;on of f (x,y) =0, then
h(u,nw)el -k[[u]]. |

il _M'u)

By Artin’s theorem we may approximate # (1) by a convergent 7 () such
that

h(u,n(w)el k{uld.
Then | |

y®) = ¥ m(®)F;®)

is an analytic solution of f (x, y) =0, approximating 7 (%).

In general, suppose that F, (x), ..., F (x) (respectively G, (%), ..., G, (%))
generate the module of equivariant  polynomial mappings of V mto w
(respectively of ¥ into Y), over the ring k [x]®. Then we may write

f<xa _21 n; F; (x)) =ﬁ, Z, hj (u (x), 77) G; (x) ;

where £; (u, n) ek {u, n}, j = 1,..., t. (This may be proved for example
inthe same way as Propos1t10n 3. 2 of [5]). |

Let M (respectlvely M ) be the k [u] — (respectively k [[#]] =) sub-
module of k [u] (respectwely k[ 1) of t-tuples (hy W), ..., b, (u)) such
that :

Z h-(u(x))G-(x) = 0.

Suppose that M i is generated by A"* (u) (h" ), ..., b W), k= 1,.
Then M= k[[u]] M. To see this, we may assume that G, (x) is homo-
geneous, of degree d; say. Let h w) = (h, (w), .. h.t'(u))eM. We write

hj(u) = ;h,z (),
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where £, is weighted homogeneous (Welghted by the degrees of the poly— |
nomials u; (x)) of degree / — d;. Then

Z hj (u(x) G;(x) = ()

for each I; i.e. (hy; (u), ..., hy (1)) € M. Hence we may write

(MORSAO) ESWHOLION
where ¢f (1) € k [1], so that

m

hw = Y (; ¢:‘<u)> B ()

k=1
as required. | o : | N}
Now suppose that j (x) = Zi-; f; (u (x)) F; (x) is a formal solution of |

f(x,y)=0;1ie

(s (0,7 @), ..o B (u, 77 () € M,

- or

hi(wn) = Y d@hw, 1<j<t,
k=1
where ¢* (W) ek [[u]], 1 <k < m. Then by Artin’s theorem there are

convergent power series (u) qb" (u), such that

m

hiw,nw) = Y, $Whw, 1<j<t,

and 1 (u) = 77 (), ¢* (u) = ¢* (w) mod m°. Let
¥ = ¥ m@@)F®.

Then y (x) is ‘equi\-/ariant, y(x) = 7 (x) mod m°, and
f (xa y (x)> = f(x» Z n; (” (x)) F; (x)) |
' i=1 » |

= Z h; (u (%), n (u-(x))) G;(x) =0.




123 —

Remark 3.2.. There are more precise formulations. of Artin’s approxi-
mation theorem (due to Artin [1] in the algebraic case; and John Wavrik [17]
in the analytic case) which assert that for every positive integer « there is. a
positive integer B («) such that for each f > B («), every p-order formal
solution 7 (x) of £ (x, ») = 0 (i.e. 7 (x) such that f (x, 7 (x)) = 0 mod m’*1)
may be apijroximated to ofder o« by an algebraic or convergent solution.
The method of our proof of Theorem B also provides invariant versions of
these results. The one point worth noting is that for every positive integer
Y, there exists a positive mteger B(Y) such that if 77 7 (u (%)) is a f (y)-order
solution of

> hy(u(x),n)G;(x) =0
i=1

(we are using the above notation), then there exist ¢* (), k = 1, ..., m,
such that (7 (u), ¢ () is a y-order solution of :

hy(u,m) = 3 ¢“Hj), 1<j<t.
k=1 ,

This statement follows from a simple extension of a theorem of Chevalley
[14, 30.1].

4. A PROJECTION FORMULA

Let G be a compact Lie group and M = L? (G, dg) the space of complex-
‘valued functions on G which are square integrable with respect to the
normalized Haar measure dg. The mapping f — f7 from M into a space of
continuous matrix-valued functions on G, defined for each irreducible
complex representation T of G by the formula

ST = [6f (67 'W) T(g)dg
=T [ef (6™ T(g)dg,

where h e G, is a generalized Fourier transform [10, Section. 12] (cf. our -

oroof of Theorem B in the complex analytic case). The Peter-Weyl theorem
gives

S® = Tdim Tt fT (),
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