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2. ProOF OF THEOREM B

2.1.  The complex analytic case. Let G be a reductive complex algebraic
group. Then G is the universal complexification of a compact real Lie
group G [9], [8, XVIL5]. .

Suppose that G acts linearly on ¥ = C", and that X is a germ at O of
an invariant closed analytic subset of V. Let / be the ideal in C {x}.
= C{xy, ..., x,} of germs of holomorphic functions which vanish on X.
Suppose that 7 is generated by £, ..., fi.

For any irreducible complex representation T: G — GL (W) of G,
we consider the action of G on the space End¢ (W, W) of complex linear
endomorphisms defined by

(g-H(w) = T(g)A(w),

where ge G, we W and Are EndC(W, w). For each i = 1, ..,k we
consider the mapping '

ff: V — End. (W, W)

fﬁ@=jRﬁ@”@T@M%
G

defined in an open neighborhood of 0 where f; converges. Then f7T is
equivariant with respect to the actions of G® on ¥ and End (W, W), and
hence with respect to the actions of G (the “unitarian trick”). Furthermore
fi(gx) = Oforallg e Gifand only if /7 (x) = 0 for all irreducible complex
representations T of G® (cf. [10, 12.2]; this is essentially the Peter-WeyI
theorem). :

Hence X is defined by the equations ‘ .
f1@) =
Where 1 < i<k and T runs over all irreducible complex representations

of GR. It follows that X is defined by a finite subset of these equivariant
equations.

2.2. The real analyﬁc case. Let G be a reductive real algebraic group.
Then the universal complexification G of G is a reductive complex algebraic
group [8, XVIII 4].
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Suppose that G acts linearly on ¥ = R”, and that X is a germ at 0 of
an invariant real analytic subset of ¥. The complexification X of X is a
germ at 0 of a complex analytic subset of ¥¢ = C". The complexification
X€ is invariant under the induced action of G¢ on V.

By the complex analytic case 2.1, there is a linear action of G on a
finite dimensional complex vector space W, and a germ H at 0 of a G°-
equivariant holomorphic mapping of some neighborhood of 0 € V¢ into W,
such that X¢ = H ™1 (0). |

Let Y be W with its underlying real structure. Then F = H | V:V-o>Y
is G-equivariant, and X = F~1 (0).

2.3. The algebraic case. Our ground field k is now arbitrary. Let G be
a reductive algebraic group acting linearly on ¥V = k", and let X be an
invariant algebraic subset of V. Let I be the ideal in k [x] of polynomials
which vanish on X, and k [x], be the subspace of k [x] of polynomials of
degree at most ¢. Then I and k [x], are invariant subsets of k [x].

For each c e N, we define a polynomial mapping

F.: V - Endy (Ink[x],, k)

by the formula F, (x) (k) = h (x), where x € V and he I n k [x],. Then F, is
equivariant and X < F ! (0) for all c € N.

We consider the ideal J in k [x] generated by the coordinate functions
of all equivariant polynomial mappings defined on ¥, which vanish on X.
Since J is finitely generated, it suffices to show that J = I. Clearly J < I.
On the other hand, suppose heInk [x], & # 0. Let {e;};_;_, be a
basis of the vector space I Nk [x], such that e, = . Then % is the
first coordinate function of the equivariant mapping F,, with respect to
the dual basis {e;},_;, in Endy (Ink [x], k). Since X <= F_'(0),
then heJ. Hence J = I as required.

This case of Theorem B may also be obtained from a lemma of Cartier
[13, p. 25].

3. PROOF OF THEOREM A

The formal power series j (x) e k [ [x]]? define a local k-homomorphism
¢:k {x,y} = k[[x]] (or a k-homomorphism ¢: k [x, y] = k [[x]] in the
algebraic case) by substitution: 4 (x, y) — & (x, j (x)).
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