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INVARIANT SOLUTIONS OF ANALYTIC EQUATIONS

by Edward Bierstone and Pierre Milman

1. Introduction

Let k be a field of characteristic zero with a non-trivial valuation.
We consider a system of analytic equations

(*) f(x9y)= 0,
where

/ O, y)(/i (*> y)>(x, y))

are convergent series in the variables

x (xr, ...,x„),
y (yi> --»yp) •

Suppose that

y<X> (y 1 (x), yp(x)),(x) £ k [[x]]

are formal power series without constant term which solve (*); i.e. such

that/ (x, y (x)) 0. Let c be a non-négative integer. Artin's approximation
theorem [3] asserts that there exists a convergent series solution

y 0) (yi (x),yp (x)), (x) e k {x}

of (*), such that

y (x)y (x) mod mc.

Here m denotes the maximal ideal of k [[x]].

Artin also proved an algebraic analogue of this theorem [1], It says
that if/ (x, y)0 is a system of polynomial equations with formal series
solution y (x), then a series solution y (x) may be found such that the
yj(x) are algebraically dependent on x1;x„ (we will say that the yj (x)
are "algebraic" ; cf. [2]). In this analogue k is an arbitrary field.
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Let G be a reductive algebraic group (i.e. G is linear and every rational
representation of G is completely reducible). Suppose that G acts linearly
on V k" and W kp. We will say that y (x) e k [[x]]p is equivariant if

y(0x)=gy(x), g eG.

We will prove the following theorem.

Theorem A. Suppose k R or C, and that y (x) e k [[x]]p is an

equivariant formal power series solution of (*), y (0) 0. Let ce N. Then
there exists an equivariant convergent series solution y (x) of (*), such that

y(x) y (x) mod mc.

Moreover, if f(x,y) 0 is a system ofpolynomial equations (where k
is any field), then there exists an equivariant algebraic solution y (x), such

that y (x) y (x) mod mc.

Remark 1.1. Theorem A may be regarded in the context of the question :

What properties of a formal solution of (*) may be preserved in an analytic
solution? Artin [2] asked whether there is a convergent solution such that
some of the variables xt are missing in some of, the series yj (x), provided
there is a formal solution with the same property. Gabrielov [6] answered
this question negatively (see also [4]). In [12] it is shown that if a formal
solution of a system of real analytic equations satisfies the Cauchy-Riemann
equations, then it may be approximated by complex analytic solutions.

Remark 1.2. Suppose that % (x) e C {x}r is an analytically regular

germ of an analytic mapping (terminology of Gabrielov [7]). Let Ft (x)
e C {x}p, i 1,..., q. We may ask whether formal relations among the Ft
of the form (/zx (n (x)),..., hq (n (x))); i.e. ^-tuples of formal power series of
this form such that

Z K (n (x)) Fi (x) 0
i= 1

are generated by analytic relations of the same form. This question
generalizes Gabrielov's problem in [7]. The answer is no in general, but the
method of our proof of Theorem A shows it is yes if n is a finite analytic

germ. As in our proof of Theorem A, it is then easy to see that a formal
solution y (n (x)) of a system of complex analytic equations / (x, y) 0

may be approximated by analytic solutions of the same form. We are

grateful to Joseph Becker for pointing out the latter result to us.
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Remark 1.3.Tougeron [16] has proved a generalization of Artin's

theorem which asserts, in particular, that every formal solution (x) of (*)

such that y (0) 0 is the formal Taylor series at 0 of an infinitely dif-

ferentiable solution. The proof of Theorem A also gives an equivariant

version of Tougeron's theorem.

Theorem A is closely related to the second result of this paper.

Theorem B. Suppose that Gacts linearly k", and that

is a closed algebraic subset of V which is invariant under the action of G.

Then there exists a linear action of G on a finite dimensional vector space

Y k?, and an equivariant polynomial mapping Y such that

X=F~1{G).
Ifk R or C, and X is a germ at 0 of a closed analytic subset

of V which is invariant under the action of G, then there exists a vector

space Yk4 on which G acts linearly, and a germ F of an equivariant

analytic mapping of some neighborhood if 0 e into Y, such that

X F'1(0).

A linear action of G on k" induces an action on k[[x]] k[[xls..., x„]]
(respectively k {x}, k [x]) such that

for all g e Gand / (x) e k [[x]] (respectively k {x}, k [x]). Let k [[x]]G
(respectively k {x}G, k [x]G) be the subset of elements fixed by G (the

invariant elements).

Remark 1.4. It is well-known that if k ='R and G is compact, then

the conclusion of Theorem B holds with Fe (R [x]G)q (or Fe (R {x}G)q in
the analytic case). In general, invariants separate only disjoint Zariski
closed invariant subsets of krt, so that invariant closed algebraic or analytic
subsets needn't be defined by invariant equations.

We will prove Theorem B in the following section, considering separately
the complex analytic, real analytic, and algebraic cases. These results may
also be obtained in a unified way, at least in characteristic zero, from an

explicit projection formula related to the Fourier transform (cf. [15], [10,

12.2]). This formula may be of independent interest, and we have included
it in section 4. In section 3 we will deduce Theorem A from Theorem B.

The authors enjoyed several conversations with Joseph Becker on the
results in this paper.
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2. Proof of Theorem B

2.1. The complex analytic case. Let G be a reductive complex algebraic
group. Then G is the universal complexification of a compact real Lie
group Gr [9], [8, XVII.5].

Suppose that G acts linearly on V — Cn, and that X is a germ at 0 of
an invariant closed analytic subset of V. Let 1 be the ideal in C {x} -

C {x1?..., xn} of germs of holomorphic functions which vanish on X.
Suppose that I is generated by fu

For any irreducible complex representation T:G^GL{W) of G,
we consider the action of G on the space Endc(W, W) of complex linear
endomorphisms defined by

GrA)(w) T(g)X(w),

where g e G, w e W and X e Endc (W, W). For each i 1,..., k, we
consider the mapping

/J" : F -» Endc{W, W)

/[(*) f Jiig-1*TJ GR

defined in an open neighborhood of 0 where ft converges. Then is
equivariant with respect to the actions of GR on V and Endc (W, W), and
hence with respect to the actions of G(the "unitarian trick"). Furthermore
fi (Qx) 0 for all ge Gif and only if/f (x) 0 for all irreducible complex
representations T of GR (cf. [10, 12.2] ; this is essentially the Peter-Weyl
theorem).

Hence Xisdefined by the equations *

/ T (v) o,

where 1 < r< k and T runs over all irreducible complex representations
of Gr. It follows that X is defined by a finite subset of these equivariant
equations.

2.2. The real analytic case. Let G be a reductive real algebraic group.
Then the universal complexification Gc of G is a reductive complex algebraic
group [8, XVIII.4].
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Suppose that G acts linearly on V R", and that X is a germ at 0 of
an invariant real analytic subset of V. The complexification Xe of X is a

germ at 0 of a complex analytic subset of Ve Cn. The complexification
Xe is invariant under the induced action of Gc on Ve.

By the complex analytic case 2.1, there is a linear action of Gc on a
finite dimensional complex vector space W, and a germ H at 0 of a Gc-

equivariant holomorphic mapping of some neighborhood of 0 e Ve into W,

suchthat Xe H'1 (0).
Let 7be W with its underlying real structure. Then F H | F: F -» 7

is (/-equivariant, and X F'1 (0).

2.3. The algebraic case. Our ground field k is now arbitrary. Let G be

a reductive algebraic group acting linearly on V k", and let X be an
invariant algebraic subset of V. Let I be the ideal in k [x] of polynomials
which vanish on X, and k [x]c be the subspace of k [x] of polynomials of
degree at most c. Then / and k [x]c are invariant subsets of k [x].

For each ceN, we define a polynomial mapping

Fc: V Endk(/nk[x]c,k)

by the formula Fc (x) (A) h (x), where x e V and h e I n k [x]c. Then Fc is

squivariant and X c F~c1 (0) for all c g N.
We consider the ideal / in k [x] generated by the coordinate functions

of all equivariant polynomial mappings defined on V, which vanish on X.
Since J is finitely generated, it suffices to show that J I. Clearly / c I.
On the other hand, suppose he In k [x]c, h # 0. Let {ej}t be a
basis of the vector space 7nk[x]c, such that et h. Then h is the
first coordinate function of the equivariant mapping Fc, with respect to
the dual basis in Endk (Ink [x]c, k). Since X c F'1 (0),
then he J. Hence J — I as required.

This case of Theorem B may also be obtained from a lemma of Cartier
[13, p. 25].

3. Proof of Theorem A

The formal power series y(x)e k [[x]]p define a local k-homomorphism
(j) : k {x, y} -+ k [[x]] (or a k-homomorphism 0: k [x, y] -> k [[x]] in the
algebraic case) by substitution : h(x,y)-*h (x, y (x)).
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Let X be the germ at 0 in V x W kn+p of a closed analytic subset

(or the closed algebraic subset of V x W in the algebraic case) defined by
the prime ideal ker </>. It follows from Artin's approximation theorem that
ker 4> satisfies the nullstellensatz (whether or not k is algebraically closed).
In other words, if h (x, y) vanishes on X, then h (x, y) e ker </>. In fact
if h vanishes on X, then for any ceN we can find a convergent series

solution y (x) of the system of equations determined by the ideal ker </>,

such that y (x) y (x) mod mc. Then h (x, y (x)) 0 and h (x, y (x))
h (x, y (x)) mod mc. Hence h e ker </>.

It follows that Theorem B reduces Theorem A to the case of an equi-
variant equation. We may assume that / (x, j)ek {x, y)* (respectively

/(xj)ek [x, y]q) is the germ of an equivariant analytic mapping
(respectively the equivariant polynomial mapping) given by Theorem B for
the invariant analytic set germ (respectively algebraic set) X.

From now on, then, we assume that G acts linearly on V k", W kp
and Y k^, and that /(x, y) is a germ of an equivariant analytic mapping
(or an equivariant polynomial mapping in the algebraic case).

Since G is reductive, then k [x]G is finitely generated (as a k-algebra)
by homogeneous polynomials u1 (x),..., ur (x) ek [x]G [13, Theorem 1.1].
Hence the homomorphisms

w*: k [w] -> k [x]G

z/*:k [[>]] -> k [[x]]G

defined by substitution h (uu ur) -> h (u± (x), ur (x)) are surjective.
If k R or C, then the induced homomorphism

w*: k{u} ->k{x}G

is surjective by a result of Luna [11].

In the remainder of the proof we consider only the analytic case. The
proof of the algebraic case is identical, if we replace the analytic version of
Artin's approximation theorem by the algebraic version.

Remark 3.1. If G acts trivially on Y, i.e. (x, j;)ek {x,y}G,

j — 1,..., q, then our theorem follows immediately. In fact let I ker w*.

Then ker w* 7-k[[w]] and ker w* 7*k {u} (the former, equality
follows by expressing a power series in k [[w]] as a sum of weighted
homogeneous polynomials, weighted by the degrees of the ub and the latter then
by Artin's theorem). Suppose that F1 (x),..., Fs (x) generate the module of
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equivariant polynomial mappings of into W over the ring k of
invariant polynomials on V,Sincef (x, L- j (x)) is invariant in
(x, rj),where G acts trivially on the variables r) ris), then there
exists hek [u,r\\q,such that

/^x, Z Ft (x) (x), r\)

S

If y(x) I fjt (u(x)) Ft (x) is a formal solution of / (x, y) 0, then
i— 1

By Artin's theorem we may approximate fj (u) by a convergent rj (u) such
that

h(u,rj(uy)el -k{u}q.
Then

s

y(x) E tli (u (x)) Ft (x)
i= 1

is an analytic solution of/ (x, y) 0, approximating y (x).
In general, suppose that F1 (x),Fs (x) (respectively G1 (x),Gt (x))

generate the module of equivariant polynomial mappings of into
(respectively of VintoY), over the ring k [xf. Then we may write

/(*, i mFiix)) Z hj(u(x),r1)GJ(x),
\ i=1 / 7=1

where hj (u, tj) ek {u, q], j 1,t. (This may be proved, for example,
in the same way as Proposition 3.2 of [5]).

A
Let M(respectively M)bethe k [u] - (respectively k [[«]] -) sub-

module of k [m] (respectively k [[w]]') of t-tuples (h1 (u),..., ht (u)) such
that

t

Z hj (u (x)) Gj (x) =0.
j= 1

Suppose that Mis generated by hk (u) (h\ (u),..., hkt (m)), k 1,...,
Then Mk [[«]] • M.Tosee this, we may assume that Gj (x) is

homogeneous, of degree dj say. Let h (u) (h1 (u),..., ht (uj) e M. We write

hj (u) Z hn (u),
I
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where hß is weighted homogeneous (weighted by the degrees of the
polynomials Ui(x)) of degree / — dj. Then

Z hß("(*)) Gj 0) °
j-i

for each /; i.e. (hu (u),..., hü (uj) e M. Hence we may write

m

(hu(u), ...,htl(u)) Z
k= 1

where $ (u) e k [w], so that

h(u)
/c=l V i J

as required.
Now suppose that y (x) Tf=1 77 f (w (x)) (x) is a formal solution of

/ (x, y) 0 ; i.e.

(&! (u,77(w)), ht (u, fj (w))^ e M

or
m

hj(u,rj(u))Z («) h) (u) 1 <j < t,
k= 1

where <p (w) e k [[w]], 1 < & < m. Then by Artin's theorem there are

convergent power series 77 (w), (j)k (w), such that

m

hj(u,rj(u))Z (j>k(u
k= 1

and r](u) ij (u), 4>k (u) 4>k (u) mod mc. Let

S

yW Z
i= 1

Then j (x) is equivariant, y (x) s y (x) mod mc, and

/^x,>' (x)^ / ^x, Z Vi(" W) C*)^

Z hJ (*)> (" (x))^ Gj (x) 0 •
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Remark 3.2. There are more precise formulations of Artin's approximation

theorem (due to Artin [1] in the algebraic case, and John Wavrik [17]

in the analytic case) which assert that for every positive integer a there is a

positive integer ß (a) such that for each ß > ß (a), every ß-order formal
solution y (x) off (x, y) 0 (i.e. y (x) such that/ (x, y (x)) 0 mod mß+ *)

may be approximated to order a by an algebraic or convergent solution.
The method of our proof of Theorem B also provides invariant versions of
these results. The one point worth noting is that for every positive integer

y, there exists a positive integer ß (y) such that if fj (ju (x)) is a ß (y)-order
solution of -

t

X hj(u(x),f])Gj(x) 0

j i

(we are using the above notation), then there exist (w), k 1,..., m,
such that (fj (u), (f) (w)) is a y-order solution of

m

hj (u> rj)£ ^ h) (") >
1 < J < t.

k=l

This statement follows from a simple extension of a theorem of Chevalley
[14,30.1],

4. A PROJECTION FORMULA

Let G be a compact Lie group and M L2 (G, dg) the space of complex-
valued functions on G which are square integrable with respect to the
normalized Haar measure dg. The mapping/ fT from M into a space of
continuous matrix-valued functions on G, defined for each irreducible
complex representation T of Gby the formula

fT(h)Uf(9~1h)T(g)dg

T(h) •Jg/C^-1) T(g) dg

where heG, is a generalized Fourier transform [10, Section 12] (cf. our
proof of Theorem B in the complex analytic case). The Peter-Weyl theorem
gives

f{h) £dim T-tr/r(h),
T
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where the sum is taken over all finite dimensional inequivalent irreducible
complex representations T. Moreover, the mapping -* defined by

(7iTf)(h) dim T- trfT(h),
where h e G, is the projection onto the largest invariant subspace of M
whose irreducible invariant subspaces are all equivalent to the representation
space of T.

Now let G be a reductive algebraic group defined over a field k of
characteristic zero. A vector space M on which G acts linearly will be called
a G-module. We will obtain projection formulas similar to the above in the
following cases :

(a) Mis a finite dimensional G-module;

(b) Mk [x] or k [fx]] ;

(c) Mk {x}, with k R or C;

where, in cases (b) and (c), x (xl,..., xn) denotes a coordinate system in
a finite dimensional G-module V,andM has the induced action of G.

If L, M are G-modules, then the space M— Endk ÇL, M of k-linear
mappings A:L-> Mis a G-module, with the action of G defined by
g • A gAg"1. If L is an irreducible G-module, then Fr Endk (L, Lf

is a field (in general not commutative). It is clear that k is a subfield of FL,
and that the action of G on Lcommuteswith the multiplication of elements
of L by elements of FL.

We define a k-homomorphism

J : FL -> Endk (FL, FL)

by

A •/{,
where X, geFL,and let

trL : Endk (L, L) -> k,

trFL : Endk (FL, FL) -> k

be the trace homomorphisms. It is not difficult to check that

trL(2) mLtrvL(j(X))

for all X e F*1, where mL is the dimension ofL over I '
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For each v* è Endk(L, k) and/ e M, we denote by v* ® fe Endk (L, M)
the mapping (?;*®/) (w) v* (w) • /, weL. We also define a generalized

trace homomorphism

Tr: EndFL(L, FL)-> Endk (L, k)

by the formula \
(Tr»#)(w) trpL (w)),

where v*eEnd^.j, (L,FL)and we L.

In the following, EM will denote a Reynolds operator for a G-module M;
i.e. Em is an invariant projection operator from M onto MG [13,
Definition 1.5]. •

Proposition 4.1. Suppose L is a finite dimensional irreducible G-
module. Let {vjL} be a basisfor L over FL, and {vf r)U,Ljl ^j^mL J 5 1 J

be its dual basis. We consider one of the following G-modules M :

(a) M is a finite dimensional G-module ;

(b) M k [x] or k [[x]] ;

(c) M k {x}, k R or C.

(In the latter two cases, the action of G is induced by a linear action on the

space of coordinates x (xl5..., x).) We define nL e Endk (M, M) by

mL

Kl(J) mL£EML(Trv^L®f)(Vj±),
j= 1

where fe M. Then

(1) %L. is a projection from M onto an invariant subspace whose
irreducible invariant subspaces are all equivalent to L;

(2) for each feM.

/ 2X.CO,
L

where the sum is taken over all finite dimensional
G-modules L in cases (b) and (c) thesum converges in the Krull topology ;
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(3) if I is an invariant ideal in M, in cases (b) and (c), then nL (/) e /
and

EML(TrvftL®f)eEadk(L,D
for all fel.

Remark 4.2. For each of the (/-modules M of Proposition 4.1, there
is a unique Reynolds operator EmL, and the mapping M -» EmL is functorial.

IfM is finite dimensional, then this follows from the definition of "reductive".
If M k [x] or k [[x]] it follows from Cartier's lemma [13, p. 25]. If
M C {x} we define

lah'fdh,
where f e ML and H is a maximal compact subgroup of G. Finally if
M R {x}, we put EmL(J) Re E (f) for f e ML, where E is the

Reynolds operator for the action of the complexification Gc of G on

C ®R Ml, and Re : C ®R ML ML is the mapping Re (/) ^ (/+/).

Remark 4.3. Proposition 4.1 provides an alternative proof of
Theorem B when char k 0. Let I be the ideal in k [x] of an invariant
algebraic subset of kn (respectively the ideal in k {x} of a germ at 0 of an
invariant analytic subset of kn, k R or C). Then for each fel and

v # e EndpL (L, FL), we define a polynomial mapping (respectively a germ

at 0 of an analytic mapping)

Ef,v# : kn -> Endk(L, k)

by the formula

Ff, v# 0) O) (EmL (Tiv* ®f) (w)) (x),

where .v e k" and weL. Then Ff v# is equivariant and X c. FJ I # (0).
We may now argue as in our proof of the algebraic case 2.3 of Theorem
B. We use the facts that (EmL (Tr v#j >L®/)(^*,l)) (X) is a coordinate

function of Ff>v#jL and that IL nL (/) converges to / in the Krull
topology, to show that the ideal I coincides with the ideal in k [x]
(respectively k {x}) generated by the coordinate functions of all equivariant

polynomial mappings (respectively germs at 0 of equivariant
analytic mappings) F such that X C F~1 (0).



— 127 —

ProofofProposition 4.1. We first consider the case (a) that M is a

finite dimensional G-module. We write M as a direct sum M ®L ML of
G-submodules ML, where the sum is taken over inequivalent irreducible
G-submodules L, in such a way that each nonzero irreducible G-submodule

of Ml is equivalent to L. Let / ILfL, where fL e ML. It is enough to

prove that nLf y= fL; in other words that %LfL> 0 if L ^ L\ and

^l/L A-
The first condition follows from the fact that Endk (L, L')g 0. Using

the functorial property of the Reynolds operators, we reduce the second to
the case M L; i.e. we must prove nLf /for allfeL. Since

m L

f Z Vî,L(f)'Vj,L,
j= 1

it is enough to show that

mL • ElL (Trv# ®f) v# (/)
for all feL and v# e EndpL (L, FL).

For each ß e FL, we define a homomorphism

tr^ : Endk (L, L) -> k

by the formula tr^ (A) trL (Jß-A), A e Endk (L,L). Then tr^ is G-invariant,
so that

tvß o ElL tr^

By a direct computation, we also check that

tr„(Trv* ®f) trpL (v# (ß •/))
Hence for each ß e FL,

tri8 (mLELL (Tr v* ® /)) mt trpL (v* (ß •/))

tr<| »*(/).
This implies that

mLElL(Trv* ® /) v*(/)
because otherwise, letting /I be the reciprocal of mL ElL (Tr v* ® f -
v# (f)in Fl, we would have dimkL trL (id) 0, contradicting char
k 0. This completes the proof of Proposition 4.1 in the case (a).
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In the case M— k [.v], it follows from the functorial property of the
Reynolds operators that %L (k [x]c) c k [x]c for all ce N. Hence properties
(1) and (2) of Proposition 4.1 follow from the finite dimensional case (a).
Moreover, if/is an invariant ideal in k [x], then /n k fjc]c is an invariant
subspace of k [x]c, and

Iulnk [x]e.
Therefore %/e / and

V (Tr vf ,L®f) <= Endk (L, I)

as required in property (c).
It remains to consider the cases M k [[*]], and k {x} with

k R, C. In each case let m be the maximal ideal and let Mc, c e N, be
the invariant subspace of Mof polynomials of degree at most c. Iffemc,
then Tr v# ® feEndk (L,mc)forall v* e Endpt FL), so that
nLfemc. Likewise if / e Mc then nLfeMc. For each fe M and ceN,
we write

where TcfeMc and Rcf e mc+ K Then for all fe and c 6 N,

*1/ - nLf nl(Rcf) - nL(Rcf)emc+1,

so that
Voreach c e N, let Pc be the natural projection from M to its subspace

of homogeneous polynomials of degree c. Each fe may be written

f ~ ZcPcf-Then nL o PcPconL for every N and every irreducible
C-module L. Suppose that N is a nonzero irreducible G-submodule of
71l (-1-0- Then either PC(N) 0 or -» is an equivalence
of G-modules. Choose c e N such that Pc N) 0. Then N is equivalent
to Pc (N) and Pc (N nL (Pc (N)) <= nL (Mc) is equivalent to L, by the
finite dimensional case (a). This completes the proof of property (1) for
M k [[v]] or k {x}.

To obtain property (2), we let N (-1) 0 and let N (c), N, be the
set of all inequivalent irreducible G-modules appearing in the decomposition
of Mc as a direct sum of irreducible G-modules. Then for each c e N,

/- E %/=Rc/~ E ntR'fe me+1.
LeN (c) LeN (c)
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Since nLf 0 if L$uc IV (c), then IL itLf converges to / in the Krull
topology.

We finally consider property (3) for k [[y]] or k {x}. Let be an

invariant ideal in M. Then InMcisan invariant subspace of It follows

that if/ e I,then nLfe I + mc+1 for all c e N, so that nLf by Krull's
theorem [14, 16.7]. Moreover

Endk(L, I) n Endk(L,/+ mc+1)
ceN

Let /el. Writing/ Tc f + Rc f and using the functorial property of the

Reynolds operators, we have

EmL (Tr vf, L 0 Tcf) e Endk (L, In Mc),

EMLÇYrvf iL®Rcf) e Endk(L,mc+1)

for all ceN.Since I + mc+1 In Mc+ mc+1, it follows that

£ML(Tr^,t®/)6Endk(L,J).

This completes the proof of Proposition 4.1.
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