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INVARIANT SOLUTIONS OF ANALYTIC EQUATIONS

by Edward BIERSTONE and Pierre MILMAN

1. INTRODUCTION

Let k be a field of characteristic zero with a non-trivial valuation.
We consider a system of analytic equations

*) S (x,y) =0,

where A

Fx) = (fi & 9), s fq (%, )

are convergent series in the variables \

'x = (X1, .00s X,) 5 -

J = (yla "°>yp) .

Suppose that | |
y_(x) = (J_}I (X), seey .)_)p (X)) s .}—)j (X) Gk[[X]] ’

are formal power series without constant term which solve (*); i.e. such
that f (x, y (x)) = 0. Let ¢ be a non-negative integer. Artin’s approximation
theorem [3] asserts that there exists a convergent series solution !

y(x) = (1 (%), 0 y,(®), y;(x)ek{x},
of (*), such that

y(x) = y(x) mod m°.
Here m denotes the maximal ideal of k [[x]].

Artin also proved an algebraic analogue of this theorem [1]. It says
that if £ (x, ) = 0 is a system of polynomial equations with formal series
solution y (x), then a series solution y (x) may be found such that the
y; (x) are algebraically dependent on x, ..., x, (we will say that the y i (%)
are “algebraic”; cf. [2]). In this analogue k is an arbitrary field.
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Let G be a reductive algebraic group (i.e. G is linear and every rational
representation of G is completely reducible). Suppose that G acts linearly
on V' = k" and W = k”. We will say that y (x) ek [[x]]? is equivariant if

ygx) = gy(x), geG.

We will prove the following theorem.

THEOREM A. Suppose k = R or C, and that j (x)ek [[x]]? is an
equivariant formal power series solution of (*), ¥ (0) = 0. Let ceN. Then
there exists an equivariant convergent series solution y (x) of (*), such that
y(x) = y (x) mod m°.

Moreover, if f(x,y) = 0 is a system of polynomial equations (where k
“is any field), then there exists an equivariant algebraic solution y (x), such
that y (x) = y (x) mod m°.

Remark 1.1. Theorem A may be regarded in the context of the question:

What properties of a formal solution of (*) may be preserved in an analyti¢
“solution? Artin[2] asked whether there is a convergent solution such that
some of the variables x; are missing in some of the series y; (x), provided
there is a formal solution with the same property. Gabrielov [6] answered
this question negatively (see also [4]). In [12] it is shown that if a formal
solution of a system of real analytic equations satisfies the Cauchy-Riemann
equations, then it may be approximated by complex analytic solutions.

Remark 1.2. Suppose that 7 (x)e C {x}" is an analytically regular
gefm of an analytic mapping (terminology of Gabrielov [7]). Let F; (x)
e C{x}?, i = 1, ..., q. We may ask whether formal relations among the F;
of the form (A (7 (%)), ..., b, (n (x))); i.e. g-tuples of formal power series of -
this form such that ) .,

Y h(EE)FE =0,

are generated by analytic relations of the same.form. This question gen-
eralizes Gabrielov’s problem in [7]. The answer is no in general, but the
method of our proof of Theorem A shows it is yes if 7 is a finite analytic
germ. As in our proof of Theorem A, it is then easy to see that a formal
solution ¥ (n (x)) of a system of complex analytic equations f(x,y) = 0
may be approximated by analytic solutions of the same form. We are
grateful to Joseph Becker for pointing out the latter result to us.
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Remark 1.3. Tougeron [16] has proved a generalization of Artin’s
theorem which asserts, in particular, that every formal solution y (x) of (*) .
such that y (0) = 0 is the formal Taylor series at 0 of an infinitely dif-
ferentiable solution. The proof of Theorem A also gives an ‘equivariant
version of Tougeron’s theorem.

Theorem A is closely related to the second result of thlS paper.

TueorReM B. Suppose that G acts linearly on V = k", and that X
is a closed algebraic subset of 'V which is invariant under the action of G.
Then there exists a linear action of G on a finite dimensional vector space
Y = K4 and an equivariant polynomial mapping F:V — Y such that
X = F~1(0). |

If k=R or C, and X isagermat 0 of a closed analytic subset
of V which is invariant under the action of G, then there exists a vector
space Y = k% on which G acts linearly, and a germ F of an equivariant
analytic mapping of some neighborhood if 0eV into 7Y, such that
X = F~1(0).

A linear action of G on k" induces an action on k [[x]] = k [[xy, ..., x,]]
(respectively k {x}, k [x]) such that

(g-x) =fg7'%)

for all ge G and f (x) ek [[x]] (respectively k {x Y, k[x]). Let k[[x]]°
(respectively k {x}%, k [x]%) be the subset of elements fixed by G (the
invariant elements).

Remark 1.4. Tt is well-known that if k = R and G is compact, then
the conclusion of Theorem B holds with Fe (R [x])? (or Fe (R {x}¢)?in
the analytic case). In general, invariants separate only disjoint Zariski
closed invariant subsets of k", so that invariant closed algebraic or analytic
subsets needn’t be defined by invariant equations.

We will prove Theorem B in the following section, considering separately
the complex analytic, real analytic, and algebraic cases. These results may
also be obtained in a unified way, at least in characteristic zero, from an
explicit projection formula related to the Fourier transform (cf. [15], [10,
12.2])). This formula may be of independent interest, and we have included -
it in section 4. In section 3 we will deduce Theorem A from Theorem B.

The authors enjoyed several conversations with Joseph Becker on the
results in this paper.
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2. ProOF OF THEOREM B

2.1.  The complex analytic case. Let G be a reductive complex algebraic
group. Then G is the universal complexification of a compact real Lie
group G [9], [8, XVIL5]. .

Suppose that G acts linearly on ¥ = C", and that X is a germ at O of
an invariant closed analytic subset of V. Let / be the ideal in C {x}.
= C{xy, ..., x,} of germs of holomorphic functions which vanish on X.
Suppose that 7 is generated by £, ..., fi.

For any irreducible complex representation T: G — GL (W) of G,
we consider the action of G on the space End¢ (W, W) of complex linear
endomorphisms defined by

(g-H(w) = T(g)A(w),

where ge G, we W and Are EndC(W, w). For each i = 1, ..,k we
consider the mapping '

ff: V — End. (W, W)

fﬁ@=jRﬁ@”@T@M%
G

defined in an open neighborhood of 0 where f; converges. Then f7T is
equivariant with respect to the actions of G® on ¥ and End (W, W), and
hence with respect to the actions of G (the “unitarian trick”). Furthermore
fi(gx) = Oforallg e Gifand only if /7 (x) = 0 for all irreducible complex
representations T of G® (cf. [10, 12.2]; this is essentially the Peter-WeyI
theorem). :

Hence X is defined by the equations ‘ .
f1@) =
Where 1 < i<k and T runs over all irreducible complex representations

of GR. It follows that X is defined by a finite subset of these equivariant
equations.

2.2. The real analyﬁc case. Let G be a reductive real algebraic group.
Then the universal complexification G of G is a reductive complex algebraic
group [8, XVIII 4].
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Suppose that G acts linearly on ¥ = R”, and that X is a germ at 0 of
an invariant real analytic subset of ¥. The complexification X of X is a
germ at 0 of a complex analytic subset of ¥¢ = C". The complexification
X€ is invariant under the induced action of G¢ on V.

By the complex analytic case 2.1, there is a linear action of G on a
finite dimensional complex vector space W, and a germ H at 0 of a G°-
equivariant holomorphic mapping of some neighborhood of 0 € V¢ into W,
such that X¢ = H ™1 (0). |

Let Y be W with its underlying real structure. Then F = H | V:V-o>Y
is G-equivariant, and X = F~1 (0).

2.3. The algebraic case. Our ground field k is now arbitrary. Let G be
a reductive algebraic group acting linearly on ¥V = k", and let X be an
invariant algebraic subset of V. Let I be the ideal in k [x] of polynomials
which vanish on X, and k [x], be the subspace of k [x] of polynomials of
degree at most ¢. Then I and k [x], are invariant subsets of k [x].

For each c e N, we define a polynomial mapping

F.: V - Endy (Ink[x],, k)

by the formula F, (x) (k) = h (x), where x € V and he I n k [x],. Then F, is
equivariant and X < F ! (0) for all c € N.

We consider the ideal J in k [x] generated by the coordinate functions
of all equivariant polynomial mappings defined on ¥, which vanish on X.
Since J is finitely generated, it suffices to show that J = I. Clearly J < I.
On the other hand, suppose heInk [x], & # 0. Let {e;};_;_, be a
basis of the vector space I Nk [x], such that e, = . Then % is the
first coordinate function of the equivariant mapping F,, with respect to
the dual basis {e;},_;, in Endy (Ink [x], k). Since X <= F_'(0),
then heJ. Hence J = I as required.

This case of Theorem B may also be obtained from a lemma of Cartier
[13, p. 25].

3. PROOF OF THEOREM A

The formal power series j (x) e k [ [x]]? define a local k-homomorphism
¢:k {x,y} = k[[x]] (or a k-homomorphism ¢: k [x, y] = k [[x]] in the
algebraic case) by substitution: 4 (x, y) — & (x, j (x)).
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Let X be the germ at 0 in ¥ x W = K"*? of a closed analytic subset
(or the closed algebraic subset of ¥ X W in the algebraic case) defined by
the prime ideal ker ¢. It follows from Artin’s approximation theorem that
ker ¢ satisfies the nullstellensatz (whether or not k is algebraically closed).
In other words, if 4 (x, y) vanishes on X, then % (x, y) € ker ¢. In fact
if & vanishes on X, then for any ce N we can find a convergent series
solution y (x) of the system of equations determined by the ideal ker ¢,
such that y(x) = y(x) mod m®. Then/ (x,y(x)) = 0 and A (x,y(x))
= (x, y (x)) mod m°. Hence 5 € ker ¢.

It follows that Theorem B reduces Theorem A to the case of an equi-
variant equation. We may assume that f(x,y)ek {x, y}? (respectively
S (x,y)ek[x, y]Y) is the germ of an equivariant analytic mapping (re-
spectively the equivariant polynomial mapping) given by Theorem B for
the invariant analytic set germ (respectively algebraic set) X.

From now on, then, we assume that G acts linearly on V' = k", W = k?
and Y = k% and that f (x, ) is a germ of an equivariant analytic mapping
(or an equivariant polynomial mapping in the algebraic case).

Since G is reductive, then k- [x]¢ is finitely generated (as a k-algebra)
by homogeneous polynomials u, (x), ..., u, (x) e k [x]® [13, Theorem 1.1].
Hence the homomorphisms ' |

u*: k[u] - k[x]%,
@*: k [[u]] > k[[x]]°

defined by substitution A (uy, ..., u,) = h (uy (%), ooy 1, (x)) are surjective.
If k = R or C, then the induced homomorphism

u*:k{u} »k{x}¢

is surjec’rlve by a result of Luna [11]. . |
In the remainder of the proof we consider only the analytic case. The

proof of the algebraic case is identical, if we replace the analytic version of

Artm s approximation theorem by the algebraic version. ‘

Remark 3.1. If G acts trivially on ¥, ie. f;(x,y)ek{x,y}%
j =1, ..., q, then our theorem follows immediately. In fact let I = ker u*.

Then ker #* = I-k[[u]] and ker u* = I-k {u} (the former. equality
follows by expressing a power series in k [ [#]] as a sum of weighted homo-
geneous polynomials, weighted by the degrees of the u;, and the latter then
by Artin’s theorem). Suppose that F, (x), ..., F, (x) generate the module of
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equivariant polynomial ‘mappings of V. into W over the ring k [x]® of
invariant polynomials on V. Since f (x, 5, nF, (x)) is invariant in
(x,n), where G acts trivially on the Vanables n= (115 ---» 115), then there

exists ek [u, n)4, such that - - :

‘f(xa > n F (x)> ‘=v h (u (), ’7) :
i=1

If y (x) =

i

ﬁ,: (u (x)) F; (x) is a formal soluti;on of f (x,y) =0, then
h(u,nw)el -k[[u]]. |

il _M'u)

By Artin’s theorem we may approximate # (1) by a convergent 7 () such
that

h(u,n(w)el k{uld.
Then | |

y®) = ¥ m(®)F;®)

is an analytic solution of f (x, y) =0, approximating 7 (%).

In general, suppose that F, (x), ..., F (x) (respectively G, (%), ..., G, (%))
generate the module of equivariant  polynomial mappings of V mto w
(respectively of ¥ into Y), over the ring k [x]®. Then we may write

f<xa _21 n; F; (x)) =ﬁ, Z, hj (u (x), 77) G; (x) ;

where £; (u, n) ek {u, n}, j = 1,..., t. (This may be proved for example
inthe same way as Propos1t10n 3. 2 of [5]). |

Let M (respectlvely M ) be the k [u] — (respectively k [[#]] =) sub-
module of k [u] (respectwely k[ 1) of t-tuples (hy W), ..., b, (u)) such
that :

Z h-(u(x))G-(x) = 0.

Suppose that M i is generated by A"* (u) (h" ), ..., b W), k= 1,.
Then M= k[[u]] M. To see this, we may assume that G, (x) is homo-
geneous, of degree d; say. Let h w) = (h, (w), .. h.t'(u))eM. We write

hj(u) = ;h,z (),
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where £, is weighted homogeneous (Welghted by the degrees of the poly— |
nomials u; (x)) of degree / — d;. Then

Z hj (u(x) G;(x) = ()

for each I; i.e. (hy; (u), ..., hy (1)) € M. Hence we may write

(MORSAO) ESWHOLION
where ¢f (1) € k [1], so that

m

hw = Y (; ¢:‘<u)> B ()

k=1
as required. | o : | N}
Now suppose that j (x) = Zi-; f; (u (x)) F; (x) is a formal solution of |

f(x,y)=0;1ie

(s (0,7 @), ..o B (u, 77 () € M,

- or

hi(wn) = Y d@hw, 1<j<t,
k=1
where ¢* (W) ek [[u]], 1 <k < m. Then by Artin’s theorem there are

convergent power series (u) qb" (u), such that

m

hiw,nw) = Y, $Whw, 1<j<t,

and 1 (u) = 77 (), ¢* (u) = ¢* (w) mod m°. Let
¥ = ¥ m@@)F®.

Then y (x) is ‘equi\-/ariant, y(x) = 7 (x) mod m°, and
f (xa y (x)> = f(x» Z n; (” (x)) F; (x)) |
' i=1 » |

= Z h; (u (%), n (u-(x))) G;(x) =0.
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Remark 3.2.. There are more precise formulations. of Artin’s approxi-
mation theorem (due to Artin [1] in the algebraic case; and John Wavrik [17]
in the analytic case) which assert that for every positive integer « there is. a
positive integer B («) such that for each f > B («), every p-order formal
solution 7 (x) of £ (x, ») = 0 (i.e. 7 (x) such that f (x, 7 (x)) = 0 mod m’*1)
may be apijroximated to ofder o« by an algebraic or convergent solution.
The method of our proof of Theorem B also provides invariant versions of
these results. The one point worth noting is that for every positive integer
Y, there exists a positive mteger B(Y) such that if 77 7 (u (%)) is a f (y)-order
solution of

> hy(u(x),n)G;(x) =0
i=1

(we are using the above notation), then there exist ¢* (), k = 1, ..., m,
such that (7 (u), ¢ () is a y-order solution of :

hy(u,m) = 3 ¢“Hj), 1<j<t.
k=1 ,

This statement follows from a simple extension of a theorem of Chevalley
[14, 30.1].

4. A PROJECTION FORMULA

Let G be a compact Lie group and M = L? (G, dg) the space of complex-
‘valued functions on G which are square integrable with respect to the
normalized Haar measure dg. The mapping f — f7 from M into a space of
continuous matrix-valued functions on G, defined for each irreducible
complex representation T of G by the formula

ST = [6f (67 'W) T(g)dg
=T [ef (6™ T(g)dg,

where h e G, is a generalized Fourier transform [10, Section. 12] (cf. our -

oroof of Theorem B in the complex analytic case). The Peter-Weyl theorem
gives

S® = Tdim Tt fT (),
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where the sum is taken over all finite dimensional inequivalent irreducible
complex representations T. Moreover, the mapping 7, : M — M defined by

(rrf)(h) = dim T-tr f7 (h),

where /e G, is the projection onto the largest invariant subspace of M
whose irreducible invariant subspaces are all equivalent to the representation
space of T. o |

Now let G be a reductive algebraic group defined over a field k of
characteristic zero. A vector space M on which G acts linearly will be called
a G-module. We will obtain projection formulas similar to the above in the
following cases:

(a) M is a finite dimensional G-module;
(b) M = k [x] or k [[x]];
(©) M =k {x},withk = Ror C;

where, in cases (b) and (), x = (x, ..., x,) denotes a coordinate system in |
a finite dimensional G-module ¥, and M has the induced action of G.

If L, M are G-modules, then the space ML = End, (L, M) of k-linear
mappings A4:L — M is a G-module, with the action of G defined by
g+A4=gAdg~'. If L is an irreducible G-module, then F~ = End, (L, L)%
is a field (in general not commutative). It is clear that k is a subfield of FL,
and that the action of G on L commutes with the multiplication of elements
of L by elements of F~. |

We define a k-homomorphism

J : FX — End, (F%, FY)
by

JDW =i,
where A, u € FX, and let

tr, : End, (L, L) - k,
tI‘FL : Endk (FL, FL) -> k
be the trace homomorphisms. It is not difficult to check that
try () = mpiry, (J (D)

for all A € F%, where m;, is the dimension of L over F~.
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For each v* € End, «(L, k) and f eM, we denote byv* ® fe Endk (L, M)
the mapping-(v*® f) (w) = v* (w) fiweL. We also define a generalized
trace homomorphlsm f .

| Tr: EndFL (L, FL) — Endk (L k)
by the formula * | e
N (Tro#) ('w) = tronJ (0% (W),
where v# € EndFL (L FL) and we L.

In the following, E M W111 denote a Reynolds operator for a G-module M;
ie. Ey is an invariant prOJectlon operator from M onto M @ [13 Deﬁ-
nition 1.5]. ’ ‘

PROPOSITION 4.1. Suppos’e L is a finite dimensional irreducible G-
module. Let {v; 1} beabaszs for L over F-, and {v * L}

be its dual basis. We conszder one of the followmg G-modules M:

1=j=my,

(@) M is a finite dimensional G-module ;
(b) M = k [x] or k [[x]];
(© M =k{x},k =RorC.

e

(In the latter two cases, the action of G is induced by a linear action on the
space of coordinates x = (Xy, ..., X).) We define n, € End, (M, M) by

nL(f) =mp Yy EML(T“) L®f)(v1L)
Jj=1

where f eM. Then .

(D) =, is a pr0]ectlon Jrom M onto an invariant subspace whose irre-
ducible invariant subspaces are all equivalent to L ;

) for ea,ch f € M
= Z 7IL (f ) s
el

where the sum is taken over all finite dimensional iﬁequivalen,i irreducible
G-modules L (in cases (b) and (c) the sum converges in the Krull topology ) ;
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(3) if I is aninvariant ideal in M, in cases (b) and (c), then n; (f) el

and =~ ' \ : ‘
ML(Trv L®f)eEnd, (L, 1)

for all fel.

Remark 4.2. For each of the G-modules M of Proposition 4.1, there
is a unique Reynolds operator E 4> and the mapping M — E 4,1 18 functorial.

If M is finite dimensional, then this follows from the definition of “reductive”.
If M =k][x] or k[[x]] it follows from Cartier’s lemma [13, p. 25]. If
M = C {x} we define

EML(f) = th‘fdh,

where fe M" and H is a maximal compact subgroup of G. Finally if B
M = R{x}, we put E _;(f) = Re E(f) for fe M*, where E is the
Reynolds operator for the action of the complexification G¢ of G on

C @g M*, and Re: C ®g M* — M" is the mapping Re () = ~ (f+f).

N =

Remark 4.3. Proposition 4.1 provides an alternative proof of
Theorem B when char k = 0. Let 7 be the ideal in k [x] of an invariant
algebraic subset of k" (respectively the ideal in k {x} of a germ at O of an
invariant analytic subset of k", k = R or C). Then for each feI and
v” e End g (L, FL), we define a polynomial mapping (respectively a germ
at 0 of an analytic mapping)

| F; ,# : k" = End, (L,Kk)
by the formula

Fp oz (x) (W) = (B, (Trv” @ f) (W) (x)

where x ek’ and we L. Then F, ,» is equivariant and X < F ;’,1,# ©). B
We may now argue as in our proof of the algebraic case 2.3 of Theorem
B. We use the facts that (E L (Trv7% 1 ® f) (v, L)) (x) is a coordinate

function of F P and that 2, w; ( f) converges to f in the Krull
topology, to show that the ideal I coincides with the ideal in k [x]
(respectively k {x}) generated by the coordinate functions of all equiv- |

ariant polynomial mappings (respectively germs at 0 of equwanant
analytic mappings) F such that X ¢ F~1 (0).




" Proof of Proposition 4.1. 'We first: consider the case (a) that M is a
finite dimensional G—module We write M as a d1rect sum M = @; M, of.
G-submodules M;, where the sum . is taken over 1nequ1valent irreducible
G-submodules L, in such a way that each nonzero 1rreduc1ble G—submodulev
of M, is equivalent to L. Let f = X, f;, where f; € M;. It is enough to
prove that 7, f'=f;; in other words that 7 f, = 0 if L #1L, and

nfL = Jfoo B
The first condltlon follows from the fact that End, (L, L)® = 0. Using

the functorial property of the Reynolds operators, we reduce the second to
the case M = L;i.e.-we must prove n; f = f for all fe L. Since

my,
f = Z'U?é,L(f)'vj,L
‘ - J=1 v
it is enough to show that |
E, (Tro* @ f) = v* ()

for all feL and v* e End_ (L, FY).
For each f € FX, we deﬁne a homomorphism

: End, (L, L) > k

by the formula tr 8 (A) = try (8-A4), 4 € End, (L,L). Then tr,is G-mvarlant
so that

try OFE = trg.
By a direct computation, we also check that
tr; (Trv”* @ f) = tro J (v (ﬁ'f))..
Hence for each S e F-,
trg(mpE,p, (Tr v* ® f)) = my trg J (07 (B-f))

This implies that \ “

my E_, (Tt v#®f) - v* (),

because otherwise, letting f be the re01procal of mL Lk(Tr v# ® f ) _

V% (f) in FX, .we would have dimy L = tr; (id) = 0, contradicting char
k = 0. This completes the proof of Proposmon 4 I 1n the case (a).
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In the case M = k [x], it follows from the functorial property of the
AReynolds operators that 7y, (k [x].) = k [x], for all c e N. Hence properties
(1 and (2) of PI‘OpOS]thI‘l 4.1 follow from the finite dimensional case (a).
Moreover, if I is an invariant ideal in k [x], then 7 n k [x]. is an invariant
subspace of k [x]., and

I =vulnk[x],.

. ceN
' Therefore n; fe I and

E . (Trv? . ®f)e End, (L, I)

as required in property (c).

It remains to consider the cases M = k[[x]], and M = k {x} with
k = R, C. In each case let m be the maximal ideal and let M., ceN, be
the invariant subspace of M of polynomials of degree at most c. If fems,
then Trv* ® fe End, (L, m¢) for all v* e End oL (L, F), so that

7y, f € m®. Likewise if fe M, then aneM For each fe M and ceN, |
we write

f=Tf+RF,
where T¢ f e M, and R° fe m®"!. Then for all fe M and ce N,

Rif —mf = nERS) — m(REf) eme*,

so that 77 = Tr. :

For each c e N, let P, be the natural projection from M to its subspace
of homogeneous polynomials of degree c¢. Each fe M may be written
f =2 P.f Then ny o P, = P, o 7, for every ce N and every irreducible |
G-module L. Suppose that N is a nonzero irreducible G-submodule of
n, (M). Then either P,(N) = 0 or P,: N— P,(N) is an equivalence
of G-modules. Choose ¢ € N such that P, (N) # 0. Then N is equivalent
to P, (N) and P, (N) = n;, (P, (N)) < mn (M) is equivalent to L, by the-.
finite dimensional case (a). This completes the proof of property (1) for

M = k[[x]] or k {x}.
To obtain property (2), we let N(—1) = @ and let N (c), ce N, be the

set of all inequivalent ifreducible G-modules appearing in the decomposition
of M, as a direct sum of irreducible G-modules. Then for each ¢ e N,

F= Y mf =Rf— Y mRfemtt,

LeN (c) " LeN (c)
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Since n. f = 0 if L ¢ U, N(c), then 2} 7, f converges to f in the Krull

topology. |
We finally con51der property (3) for M =k [[x]] or k {x}. Let 1 be an -

invariant ideal in M. Then I n M, is an invariant subspace of M,. It follows

that if f e I, then aneI + me* 1! for all ceN, so that n; fel by Krull’s

theorem [14, 16.7]. Moreover

End, (L,I) = n End (L, I+ m*Y).
ceN o

Let fel Writing f =-T¢f+ R°fand using the functorial property of the
Reynolds operators, we have

E,.(Tro} @ T°f)e End (L, InM,),

E, . (Tro} ®R°f) e Endy (L, nf+ 1
for all ce N. Since 7 + m**! = I n M, + m*', it follows that
E . (Trv% 1 ®f) e Endy (L, D).

This completes the proof of Proposition 4.1.
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