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is one-to-one on an open neighborhood U of x, in G/P and (exp X) * x,

is identifiable as the point (x, ..., x,) and the-incident hyperplane

7

Xn — Xy = D1 (xll_xl) + .. +'pn—1(xr/t-—1 _xn—l) ’

Now, (ekp X)) xy— (exp X) - by is a section of the bundle G/P, over U
and, via this section, the form w on G/P; pulls down to

 wo ((exp X))~ d (exp‘X))

which, when expressed in terms of x, ..., X,, Py, .., Pn—1, Will be identified
with '

dxn - pldxl - - pn—ldxn—l
up to a constant multiple a # 0. For this latter calculation we will use
__,—adX .
(expX) td(expX) = ——— (dX)
ad X

= dX — % [X,dX] + é[x, [X,dX]] — ...

[4, (10.2) ], a series which is finite since m is nilpotent. In fact, our choice
of X will make the series for exp X themselves finite. The constant a 5 0
could be made unity by using instead the section (exp X) - x, — (exp X)g by,
where g in P is chosen so that y (g9) = a. This amounts to following the
original section by R;! in the bundle

3. CO-DIRECTIONS IN PROJECTIVE SPACE

The contact structure on thé (2n—1)-dimensional space of co-directions
in complex projective space P", described in 2.5, is obtained when the cons-
truction of 2.10 is carried out for the simple complex Lie algebra of type
A, n > 1. - :

3.1 Let g =sl(m+1; C), complex (n+1) by (n+1) matrices of
trace zero. For Cartan subalgebra § of g take the dlagonal matrices of g.
Let §;, i = 0,1, ..., n be the linear function on b which assigns to H = dlag
(hy, ..., h,) in B the i d1agonal element: 6, (H) = h;. The roots of g w1th
respect to b are ‘ .

0, —06; i,j= 0, 1,...,n

J
and i # j
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and the root vector E, corresponding to the root « is

Eéi = E

—(Sj ij o

the matrix with 1 in the i row and j™ column and Os elsewhere [4, (16.2) ].
A system of simple roots is

50 - 51, 51 - 52, seey 5,1._1 - 5,1,
for which the maximal root is
p = (66—0y) + (0;—=0;) + ... +(0p—1—0,) = do — I,

[4, App., Table E]. The Killing form of gis ( X, ¥y = 2 (n+1) tr (XY),
but we replace this with ( X, ¥ ) tr (X'Y) for convenience. Then the H,
in ) are given by

Hy,s; = diag(0, ...,0, 1,0, ..,0, 1,0, ..., 0)
with 1 and —1 in the " and j™ entry, respectively. Especially,

H, = diag (1,0,...,0, —1).
We have

<0j=0o0ri=mn
> 0 otherwise |,

< Hp: H&,;-éj > {

so that p in (i) of 2.9 consists of matrices of the form

. %k %k *
0
S %
; [ s s 0 *

of trace zero, where the starred entries are arbitrary.

3.2 The connected centerless simple group G = PSL (n+1;C)
= SL (n+1; C)/{center} is transitive on the space consisting of points x
and incident hyperplanes u, ux = 0, in P, as in 2.5. The isotropy subgroup
P of the incident point-and hyperplane

xO = t(]., O, ceey O), uo = (0, ceey O, 1)
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has exactly p for its Lie algebra. Hence, the homogeneous contact manifold
which the construction of 2.10 gives is

G/P = space of incident points and hyperplanes in P"

= space of co-directions in complex P".

3 3 Let m be the (2n— 1)-dimensional supplement to P in g consisting
of matrices of the form

— 0 N
* 0
P £ 0 |,

cf. 2.12. The product of any two matrices of m has a nonzero entry only
in the n™ row and 0" column: the product of any three is zero. Set

_ 0 ‘ _
X4 | 0
X = |
X1
1
xn_izpi-xi P1+ePu-1 O s

where the summation is over i = 1,2,...,n—1. X is in m and

»

] ”
| - 0
expX =1,,; +X +%X2 =
x,,g_l 0
| | X, = Py p,,_l 1 1,




[ 1
—x, 0
(expX)™' =1, — X +%X2 =
—'X;n—l 0
| —Xx, + ). pX; —Dy ‘_Pn_:\‘“ 1.

The point
x =(xpX) - x, =(1,xg,...,X,)

is incident with the hyperplane

U = Uy '(e‘XPX)_1 = (—x,+ Zpixi’ —P1s s —DPu-1>1),
and the hyperplane ux’ = 0, x’ = *(1, X{, ..., x.), is
Xp = Xy = Py (¥{ =X;) + oo + Pp—sg (an{—xn—1) .

Thus, this choice of X establishes the classically identifiable coordinates
X1y eees Xpy D1 ooes Pu—y ON G/P,

3.8 Fromp = 6,—6, we have W = E, = E,, in (iii) of 2.9 and
wo (X) = { W, X' ) is the n0-entry of X. The form w on G/P is obtained
as @ = g ((exp X)~' d(exp X)) with

1
(expX)~1d (expX) = dX —E[X’ dX]

as in 2.12. For X as in 3.3, the only nonzero entry in [X, dX] is the #n0™
and it is ) p;dx; = — ) x;dp;. Hence

__ 0 —
dx
(expX) 'd(expX) =

dxn-— 1

__ dx,— Y. pdx; dp;..dp,_; 0 _],
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and the n0-entry is
o = dx, — pdx, — - Dy 1d%,_ 1 .

This identifies the contact structure with the classical one as in 2.12.

3.5 The real contact structure on the (2n—1)-dimensional space of
co-directions in real projective space P" is described by viewing all quantities
in the foregoing discussion as being real. Especially, G, of 2.11 is the con-
nected centerless group PSL (n+1;R) consisting of real contact auto-
morphismes. \

4. HIGHER SPHERE GEOMETRY

4.1 In complex Euclidean space E”, the equation
X2 4+ o +x2=2a3%] — .. —2ax,+C =0
describes a sphere with center (ay, ..., a,) énd corhplex fadius r given by
r? =al +..+d>-C.

When r # 0, the two choices of sign for r is said to give two “orientations”
to the sphere. Thus, the n+2 coordinates ay, ..., a,, ¥, C, which are related
by |
aj + ...+at—r*—-C=0,

describe the space of oriented spheres in E" [6, §25].
Introduce homogeneous coordinates by

b

o A U
a, =—, r=—,C =-
v v v

i= 1,2, ...,n Then the oriented spheres of E" correspond to certain
points of the quadric ¥***! in P"*? described by

af + ... +02 -1 —uv =0.
The sphere corresponding to the point (a4, ..., &, 4, 4, v) of "1 is
V(XA XD = 20%; — e — 20, + 0 =0.

Ordinary spheres have finite nonzero radius r, so v # 0. For v =0, we
obtain oriented hyperplanes. For 1 = 0, we obtain point spheres or
hyperplanes with isotropic hyperplane coordinate vector; these carry no
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