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is one-to-one on an open neighborhood U of x0 in G/P and (exp X) • x0
is identifiable as the point {xu xn) and the incident hyperplane

x'n-xn jPl(^l-^l) + + Pn-l(Xn-l ~Xn-l) •

Now, (exp X) • x0 -> (exp X • b0 is a section of the bundle G/P± over U
and, via this section, the form co on G/P± pulls down to

co0 ((exp X)-1 d (exp X))

which, when expressed in terms of xu xn, pu pn-u will be identified
with

dxn - p1dx1 - - pn_1dxn_l

up to a constant multiple a ^ 0. For this latter calculation we will use

l-e~adx
(expX) xJ(expi) (dX)

ad X

dX-\ [X, dX\ + i [X, [X, dxj] -2 6

[4, (10.2) ], a series which is finite since m is nilpotent. In fact, our choice
of X will make the series for exp X themselves finite. The constant a ^ 0
could be made unity by using instead the section (exp X) • x0 -» (exp X)g ~1 -b0,
where g in P is chosen so that x (d) This amounts to following the

original section by Rin the bundle.

3. Co-directions in projective space

The contact structure on the (2n — l)-dimensional space of co-directions
in complex projective space Pn, described in 2.5, is obtained When the
construction of 2.10 is carried out for the simple complex Lie algebra of type
An, n > 1.

3.1 Let g $l(n + 1; C), complex (n+1) by (n+1) matrices of
trace zero. For Cartan subalgebra I) of g take the diagonal matrices of g.
Let ôb i 0,1,..., n be the linear function on I) which assigns to H diag
(hu hn) in I) the /^ diagonal element: ôt (H) hb The roots of g with
respect to Ï) are

5t - ôj ij 0,1 ,,.;,n
and i # j
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and the root vector Ea corresponding to the root a is •
_

Eöi-sj

the matrix with 1 in the ith row and jth column and Os elsewhere [4, (16.2) ].

A system of simple roots is

S0 S2? • ••? &n— l Sn 9

for which the maximal root is

P {S0 — S±) + (5i — 52) + ~ $n) — 30 — Sn

[4, App., Table E]. The Killing form of g is < X9 7) 2 (n+1) tr (XY),
but we replace this with < X, Y > tr (X Y) for convenience. Then the Ha

in I) are given by

H3i-Ôj diag(0,..., 0,1, 0,..., 0, -1,0, ...,0)

with 1 and -1 in the ith and jth entry, respectively. Especially,

Hp diag (1, 0,..., 0, -1).
We have

f < 0 7 0 or i n

>0otherwise,
so that p in (i) of 2.9 consists of matrices of the form

—, * * - * —

0 I

L 0 ——— 0 * _
of trace zero, where the starred entries are arbitrary.

3.2 The connected centerless simple group G PSL (n +1 ; C)
SL (n +1 ; C)/{center) is transitive on the space consisting of points x

and incident hyperplanes u, ux 0, in Pn, as in 2.5. The isotropy subgroup
P of the incident point and hyperplane

x0 '(1,0, ...,0), u0 (0, ...,0,1)



— 90 —

has exactly p for its Lie algebra. Hence, the homogeneous contact manifold
which the construction of 2.10 gives is

G/P space of incident points and hyperplanes in P"

space of co-directions in complex Pn.

3.3Let m be the (2n-l)-dimensional supplement to p in g consisting
of matrices of the form

0

cf. 2.12. The product of any two matrices of m has a nonzero entry only
in the nth row and 0th column; the product of any three is zero. Set

X

x„~2^Pixi 0

where the summation is over i1, 2,..., 1. X is in m and

'
1

exp X — l„+i + + —

x, \ 0

x„-n—1

Xn Pl-Pn-lX1
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(expX)-1 1„+1 -X + -Z2

-x,

-x„_n-

—-*» + Z PiXi -—-7n-l ' 1-

The point
x (exp X) •x0 '(l.Xj, ...,x„)

is incident with the hyperplane

U Mo-(expX)"1 (-X„+^PtX1),

and the hyperplane ux' 0, x' ' (1, x/,..., x'n), is

x'n ~Xn Pl(xl~xl)+ +P„-1(X„_1'-X„_1).

Thus, this choice of Z establishes the classically identifiable coordinates

xu xmpu -,Pn-ion G/P.

3.8From p <50-<5„, we have W Ee in (iii) of 2.9 and
<»0 (Z) < W, XX) is the nO-entry of X. The form m on G/P is obtained
as co c0q((expX)'1 (/(exp X)) with

(expZ)-1 d (expZ) - ^ [Z, dZ]

as in 2.12. For Z as in 3.3, the only nonzero entry in [Z, ] is the n0>h

and it is ^jpidxi — — YjxidPi-Hence

(exp Z) 1 d (exp Z)

dxl
0

dxn _ •£

dxn~ Z PidxidpI -1 0 _
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and the «O-entry is

co dxn — Pidxt — — pn_1dxn_1

This identifies the contact structure with the classical one as in 2.12.

3.5 The real contact structure on the (2n — l)-dimensional space of
co-directions in real projective space P" is described by viewing all quantities
in the foregoing discussion as being real. Especially, G0 of 2.11 is the
connected centerless group PSL (n +1 ; R) consisting of real contact
automorphisms.

4. Higher sphere geometry

4.1 In complex Euclidean space En, the equation

x[2 + + x2 — 2a{x[ — — 2anxn + C 0

describes a sphere with center (au an) and complex radius r given by

r2 a\ + + a\ - C.

When r =£ 0, the two choices of sign for r is said to give two "orientations"
to the sphere. Thus, the n + 2 coordinates au an, r, C, which are related
by

a2 + + ü2n — v2 — C — 0,

describe the space of oriented spheres in En [6, §25].

Introduce homogeneous coordinates by

i 1, 2,..., n. Then the oriented spheres of En correspond to certain
points of the quadric pn+1 in Pn+2 described by

cc\ + + oc2n — X2 — pv 0.

The sphere corresponding to the point (al5..., an, 2, p, v) of Wn + 1 is

v(x[2 +... +x'n2) — 2olxx[ - - 2anx^ + n 0

Ordinary spheres have finite nonzero radius r, so v # 0. For v 0, we
obtain oriented hyperplanes. For X 0, we obtain point spheres or
hyperplanes with isotropic hyperplane coordinate vector; these carry no
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