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ON LIE’S HIGHER SPHERE GEOMETRY

by Jay P. FILLMORE

1. INTRODUCTION

In this paper we draw together two theories having their roots in
the ideas of S. Lie over a century ago: Lie’s higher sphere geometry, with
its famous line-sphere transformation [5], and the theory of Lie groups,
especially the description of a geometry by global Lie groups 1, Indeed,
not until the 1960s, with the appearance of W. M. Boothby’s description
of homogeneous contact manifolds [1, 2] and with the appearance of
parabolic subgroups, could this connection be established. One can now
say, in terms of Lie groups, that the three-dimensional complex line and
sphere geometries are isomorphic and that the real line and sphere geometries
are two distinct real forms of one geometry. Furthermore, the line-sphere
transformation gives explicitly the isomorphism of the complex forms.

In Section 2 we summarize the formulation of Boothby’s theory for
algebraic homogeneous contact manifolds and make some observations
about their real forms. The classical contact manifolds of complex co-direc-
tions in projective space and of Lie’s higher sphere geometry are described
in general in terms of this theory in Sections 3 and 4. Finally, in Section 5,
the connection with Pliicker’s line geometry in three dimensions is estab-
lished, and the line-sphere transformation is brought into perspective.
This introduction continues with an overview of F. Klein’s formulation
of Lie’s theory [5, 6], Boothby’s theory, and their connection.

To a line in complex projective space P> may be assigned Pliicker
coordinates

$1 = P12s & = DP31s & = Pas,s
€4 = DPo3z» &5 = Po2> &6 = Dot s

[6, §20]. These coordinates satisfy
Ev8y + b5 + ¢3¢ = 0,

1 This description of Lie’s higher sphere geometry in terms of Lie groups answers
a question posed in 1965 by S. SasAki [9, p. 173].
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and hence lines in P> correspond to points of a quadric Q* in P>. Two lines
in. P3 intersect when their corresponding points on Q* are conjugate.
A surface element in P3, a point and incident plane, becomes the pencil
of lines passing through the point and lying in the plane; this corresponds
to a line lying in Q*. The space of surface elements in P> thus corresponds
to the space of lines in Q* The projectivities of P> which preserve the
quadric Q* permute the lines of Q* and hence the surface elements of P>,
Moreover, these projectivities preserve the condition, between two surface
elements at infinitesimally adjacent points, that a point of one lies on the
plane of the other; hence they are contact transformations of P>.

To a sphere -

x2 +y? + 2% —2ax —2by —2cz +C =0

~in complex Euclidean space E>, with center at x = a, y = b, z = ¢ and |
radius ‘
2 =a?>+b*+c*-C,

the sign of r corresponding to an “orientation”, may be assigned homo- |
geneous coordinates ’

, b = ,c=z,r=

a =

p
-

= | R

[6, §25]. These coordinates satisfy
B4y = IR — =0,

and hence oriented spheres in E> correspond to certain points of a quadric
¥4 in P°; if spheres which are points or planes or which have centers at
infinity are included, all points of ¥* are obtained. Two spheres in E°
are tangent at a point, orientations taken into account, when their corres-
ponding points on ¥* are conjugate. An “oriented” surface element in E3, |
a point and incident oriented plane, becomes the pencil of sphercs tangent _
to the plane at the point; this corresponds to a line lying in ¥*. The space
of oriented surface elements of E> thus corresponds to the space of lines -
in ¥*. The projectivities of P> which preserve the quadric ¥* permute
the lines of ¥+ and hence the oriented surface elements of E*. Moreover,
these prOJect1V1t1es are contact transformations of E3.
The line-sphere transformatlon dlscovered by Lie, is given by

€1=a+\/—:1_ﬁs 64=O€_\/_1ﬁ’
fz'=,?+/1, Es =y — 4,
63 = U, 66

_v,,
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as formulated by Klein [6, §70]. This makes correspond points of . the
quadric Q* of signature (+++ ———) and points of the quadric pt
of signature (+ + + + — —). Conjugate points correspond to conjugate
points, and a line in one quadric corresponds to a line in the other. Thus,
surface elements in P3 correspond to oriented surface elements in E°
and this correSpondence is a “contact transformation”. ‘

Now, classically a contact transformation in P 3 or E* is a transformation
on the 5-dimensional space of surface elements which preserves, up to a
non-vanishing multiple, a maximal rank Pfaffian form

) =dZ—pdx—'Qdy,

[6, §63], where the coordinates x, y, z, p, g describe the surface element
consisting of the plane -

z' —z =px' —=x) +q(y —)

at the point (x, y,z). The condition w = 0, that at two infinitesimally adja-
cent points the point of one surface element lies on the plane of the other,
is preserved by a contact transformation. The appropriate spaces for the
line-sphere transformation are the 5-dimensional spaces of lines in Q*
and lines in ¥*. Exhibiting the Pfaffian forms and examining the effect
of the line-sphere transformation on them may be done systematically by
observing that these spaces are homogeneous.

Boothby’s ~ description of compact homogeneous complex contact
manifolds [1,2; and 7, §2] constructs for each type of simple complex
Lie algebra g: a connected centerless simple Lie groups G having Lie
algebra g, a parabolic subgroup P of G, and a Pfaffian form w on a
principal C*-bundle over G/P, so that G/P, with w pulled down by local
sections, is a compact complex contact manifold, homogeneous under the
1dentity component G of the group of all its contact automorphisms. Every
such contact manifold is so obtained uniquely up to isomorphism. This
construction yields, for the classical simple Lie algebras:

A, projective cotangent bundle of P"—the classical
space of incident point-hyperplane pairs in P",

B,and D;  space of lines in a quadric,

C, odd-dimensional projective space P2'*1,

[1,(7.1)]. The isomorphism A4, ~ D, arises from the description of
surface elements in P> as lines in Q* by Pliicker coordinates. Since the
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complex quadrics Q* and ¥* both have groups of projectivities of the
type Ds, the contact manifolds of line geometry and sphere geometry, §
when viewed as the spaces of lines in Q* and ¥* respectively, are necessarily
the same, that is, isomorphic. :

When Boothby’s description of homogeneous contact mamfolds is
refined, using J. A. Wolf’s theory of complex flag manifolds [8, Ch. I,
to include their real forms, line geometry and sphere geometry are no
longer the same, but, as was classically recognized [6, §25], are obtained
from the real forms PSO (3,3;R) and PSO 4,2; R) of PSO (3, 3; C)
and PSO (4, 2; C), where the quadratic forms defining these projective
special orthogonal groups are those of the quadrics Q* and ¥*. Now,
PSO (3,3; C) and PSO (4,2; C) are isomorphic, so the corresponding §
complex contact manifolds are isomorphic; in fact, these groups, are
conjugate in PSL (6; C) by the matrix of Klein’s description of the
line-sphere transformation. Viewed another way, PSO (3, 3; R) and
PSO (4,2; R) correspond to two real forms of PSO (3, 3; C) defined
by two complex conjugations. Consequently, real line geometry and real -
sphere geometry are two distinct real forms of complex line geometry. The |
line-sphere transformation then corresponds to an automorphism  of
PSO (3, 3; C) connecting the two complex conjugations.

Line-sphere
transformation

TN

Real points
for sphere
geometry

pS

Real points for line
geometry

Real points of PS.
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