Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ACYCLIC MAPS

Autor: Hausmann, Jean-Claude / Husemoller, Dale

Anhang: APPENDIX — SIMPLICITY PROPERTIES OF FIBERS
DOI: https://doi.org/10.5169/seals-50372

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-50372
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

73 —

where N = ker (n; (X) — m; (Y)). By (6.6) the map p; is i-connected since

the fiber of the two vertical arrows is 4 (P,X)y. Now by (5.4) we see that
«; is simple for k > i.

For two decomposmons (X?) and (X7 of f:X—Y satlsfymg the above
conditions, we have P,X; = P, X; and both X; and X; map into X,
constructed above, such that the resulting diagrams are homotopy commu-
tative. The connectivity of the §; and (5.1) shows that these maps are all
homotopy equivalences. This proves the theorem.

(6.8) Remarks. This theorem (6 7) coincides with the Dror results for
Y a point [D1, Theorem 1.3] and ¥ = S" [D2]. An interesting problem is
to describe the ith stage X; in terms of invariants of X;_; as in [D1] and
[D2]. (See the footnote in the introduction.) )

APPENDIX — SIMPLICITY PROPERTIES OF FIBERS

; ' S
In the proof of (5.4) we used the fact that for a fibration F - E — B
the action of 7y (F) on Im (0 : w41 (B) — m, (F)) is trivial. This assertion
does not seem to be in the literature so we include a proof here.

We extend the mapping sequence of the fibration fto QB - F - E LR B
and study F as the total space of a principal fibration with fibre the H-space
QB. If G is an H-space, then n; (G) acts trivally on w, (G) because the

covering transformations G — G on the universal covering G of G are
homotopic to the identity. This is proved by lifting a loop to a path in G

and using the H-space structure on G to deform the identity along this path
to the covering transformation defined by the homotopy class of the loop.
Recall that a principal fibration is induced from G — E; — B up to fibre
homotopy equivalence.

(A.1) PROPOSITION. Let G — X 5Y bea principal fibration with
fibre G acting on X. Then we have :
(@) im (n, (G) » =, (X )) acts trivially on n, (X), and
(b) my (X) acts trivially on im (n, (G) — =, (X)).

Proof. For (a) we have the following commutative diagram induced

by a covering transformation T : G — G.




G > GxX > X
T/" - Tx1 /4 , T
G >-éx)~(_ : > X J
N NV o
G > GxX D¢

The covering transformation T defines 7", and since 7T is homotoplc to the
identity so is 7”. This proves (a). |
For (b) we use the following commutative diagram where T is any

covering transformation of X.

G x X >

\le&'G /I
N, N

T Gx X

Now the inclusion 7 : G —» X is the composite of the first horizontal row,

and T'i and i are homotopic by i, (g) = g - « (t) where g € G and « is a
lifting of the loop « corresponding to the covering transformation 7.
This proves the proposition.

‘For a general fibration f: E — B with fibre F the mappmg sequence
QB - F - E — B allows us to deduce the next proposmon from the |

previous one.
| (A 2) PROPOSITION. Let f:E — B be a ﬁbratzon with ﬁbre F - E.
Then we have :

(a) im (n2 (B) - my (F)) acts trivially on m, (F), and
(b) n, (F) acts trivially on im (0:7m11 (B) > m; (F)).
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