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We prove X — F is a homotopy equivalence with the same argument used
in (5.6) to show P, implies H,. Since F is also the fibre of Xy — [Br; (X IES
we have proved the theorem.

(5.8) Remark. Using (5.1), we see that for an acyclic map f: X - Y
which is k-simple for all £ = 2, the homotopy groups 7, (Y) can be com-
puted in terms of n, (X) and =, (Br; (X)§) = 7, (BN)™ for i = 2. Some
computations of n, (BN ") for a certain perfect group N can be found for
instance in [H, Chapter 7].

§ 6. -ACYCLIC MAPS INTO A GIVEN SPACE

In this section we study acyclic maps f: X — Y into a fixed space Y.
Two such map f: X — Y and f’ : X’ — Y are called equivalent provided
there is a homotopy equivalence 4 : X —» X’ with f ~ f'h. Let AC(Y)
denote the class of equivalence classes of acyclic f: X - Y over Y where X
and Y are CW-spaces. |

(6.1) DEFINITION. An extension data over a space Y is a triple (P, i, D)
where

(a) @ isanextension 1 > N—> G—mny(Y)—>1 with N perfect,

(b) i:BG — BGY is an acyclic map with ker (my (D)) = N (whose equi-
valence class is well defined by-(3.5)), and

() ¢ :Y - BGy is a2-connected map.

Two triples of extension data (®, i, ¢) and (&', i’, ¢') are called equi- |
valent provided there exists an isomorphism g : G — G’ making the follow-
ing diagrams commutative (up to homotopy for the second one).

Bg

BG 2. BG
¢ 2 ¢ i’l l i
B
\\ // BG: 2% B(GH:
. X oA
m (Y) E\ yt

Y




— 69 —

where N’ = g (N) and Bg™ is the unique homotopy equivalence deter-
mined by g with (3.1).
We denote by ED (Y) the class of equivalence classes of extension data.

(6.2) DERINITION. The datamap p is the function p : AC(Y) - ED (Y)
which assigns to an acyclic map f:X — Y the class p (f) = (D1, o)
of extension data defined as follows :

(a) @ is the extension 1> kern, (f) > n (X) > 7 (YY)~ L

(b) (c) With the well defined j:X — BG for G = m; (X) we form the
cocartesian diagram -

.

J

X —» BG
fl l i
)
Y — YuBG
X

Since £ is acyclic, i is acyclic, and since 7, (/) is an isomorphism, ker (7, (D)
= N. Thus Y U xBG is BGy up to equivalence. '

Now we have to check that the map ¢ : ¥ - YU yxBG = BGy is
2-connected. Since 7, (j ) is an isomorphism, 7, (¢) is also an isomorphism.
The fact that 7, (¢) is surjective comes from the diagram.

() < m(Y) > Hy(Y) < Hy(Xy)

% @) | |m® |/

¥
n,(BGy) <— mn,(BN*) —=» H,(N)
The surjectivity on the right is a classical result of Hopf which follows easily

from the Serre spectral sequence of the fibration X- X ~ = BN.

Now using (2.5) a simple argument, left to the reader, shows that
p:AC(Y) - ED (Y) is well defined.

(6.3) THEOREM. Let Y be a CW-space. Themap p : AC(Y) - ED (Y)
surjective and its restriction to the subclass ACg(Y) of AC(Y) of f: X
— Y which are k-simple for all k = 2 is a bijection.

Proof. To show p is surjective, consider extension data (D, i, ) and
form the cartesian square
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X = Yx ;BG —» BG

fl‘ o lz

Yy 2, BGt=r
Now f'is acyclic by (2.2), and since its fiber is the same as i, we deduce by
(5.2) that £ is k-simple for all k > 2.

Next, let p (f) = (Do, iy, ¢,) and we show this extension data is
equlvalent to (&, i, $). Using the homotopy exact sequences for X — ¥
-and BG - BGy and the fact that ¢ is 2-connected, we deduce from the five
lemma that 7, () : 7; (X) » G is an isomorphism. The followmg diagram
shows that (&,, i,, gbo) 1s equivalent to (@, i, ¢) and p is surjective. '

L

X » BG
o

)-<

= BG}

‘Knl(oc)“k
| v

YU xBm, (X)

Now, if f: X > Y is an acyclic map which is k-simple for all k > 2
and with p (f) = (9, i, ®), then we form the followmg commutative
diagram.

X - ¥Yx.B6 —» BG
AN i @=mw)
Y . BG:t -

As we have seen in the proof the surjectivity of p, the map £, is acyclic and
k-simple for k = 2. The map d induces an isomorphism on the fundamental
groups and on homology with Z n; (Y) twisted coefficients. By (5.3),
the map d is a homotopy equivalence. This proves that the acyclic map fis
equivalent to the mduced map fo- Thus p restricted to ACj (U) — ED (Y)
is a bijection.
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(6.4) Remark. This theorem leaves open the question of the fibres

of the function.
p: AC(Y) > ED(Y).

In the next theorem we factor an acyclic map by ones having simplicity
properties. —

(6.5) Remark. In theorem (6.3), if one fixes an extension ¢ : 1 - N
— G > n, (Y) — 1, then the same proof permits us to classify acyclic maps
f:X - Y which are k-simple for k > 2 together with an identification
d:n, (X) — G such that &d = =, (f). The objects of ED (Y) have to
be replaced by couples (i, ¢) where i : BG — BGy is as above and ¢ : Y
— BGy is 2-connected with the following diagram commuting up to

homotopy. B® ‘
| / Vjﬁ /
| i
¢
Y » BGy

This is what is done implicitely in [H, Sections 2 and 4]. Observe that
we are dealing here with classes which are sets.

(6.6) LeMMA. Let X be a CW-space and N a perfect normal subgroup
of ny (X). Let X — P,X denote the nth stage of the Postnikov decomposi-
tion of X. Then for all n Z 1 we have that

(1) =; (XR) - n; (P, X)N) isanisomorphism for j < n and an epimorphism
for j=n+1, and

(2) m;(AXy) — 7; (4 (P,X, ) is an isomorphism for j<n and an epi—r
morphism for j = n + 1.

Proof. Consider the following homotopy commutative diagram of
fibre sequences N 5
T — AXy —> A(PX)

L l

F —_—> ‘iN S PniN

G —> (X)" —> (P.Xy)*.




i

Clearly 7; (F) = 0 for i < n + 1. The spaces X ~ and P,,E( v have the same

(n+1)-skeleton and the same can be assumed for X  and (P,X,)". Hence
n;(G) = 0 for i < n + 1. Now (1) follows because G is the ﬁbre of Xy
- (P, X)".
By comparing Serre spectral sequences, we obtain the surjectivity of -

H, (Ns H,q (F)) — H, (N, H, 4 (G)) = Hn+1 (G) = m,41(G).
Thus 7; (T) = 0 for _j < 7 and (2) follows.. |

(6 7) THEOREM. Let f:X - Y be a map between CW-spaces. Then
there is a factorization

such that B; is i-connected and «; is an acyclic map which is k-simple for - h
k > i v '
Such a decomposition is unique up to a homotopy equivalence.
Proof. The ith stage X; is defined by the cartesian diagram
Y x ;P,(X) —> PX

Y — @X)y=T
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where N = ker (n; (X) — m; (Y)). By (6.6) the map p; is i-connected since

the fiber of the two vertical arrows is 4 (P,X)y. Now by (5.4) we see that
«; is simple for k > i.

For two decomposmons (X?) and (X7 of f:X—Y satlsfymg the above
conditions, we have P,X; = P, X; and both X; and X; map into X,
constructed above, such that the resulting diagrams are homotopy commu-
tative. The connectivity of the §; and (5.1) shows that these maps are all
homotopy equivalences. This proves the theorem.

(6.8) Remarks. This theorem (6 7) coincides with the Dror results for
Y a point [D1, Theorem 1.3] and ¥ = S" [D2]. An interesting problem is
to describe the ith stage X; in terms of invariants of X;_; as in [D1] and
[D2]. (See the footnote in the introduction.) )

APPENDIX — SIMPLICITY PROPERTIES OF FIBERS

; ' S
In the proof of (5.4) we used the fact that for a fibration F - E — B
the action of 7y (F) on Im (0 : w41 (B) — m, (F)) is trivial. This assertion
does not seem to be in the literature so we include a proof here.

We extend the mapping sequence of the fibration fto QB - F - E LR B
and study F as the total space of a principal fibration with fibre the H-space
QB. If G is an H-space, then n; (G) acts trivally on w, (G) because the

covering transformations G — G on the universal covering G of G are
homotopic to the identity. This is proved by lifting a loop to a path in G

and using the H-space structure on G to deform the identity along this path
to the covering transformation defined by the homotopy class of the loop.
Recall that a principal fibration is induced from G — E; — B up to fibre
homotopy equivalence.

(A.1) PROPOSITION. Let G — X 5Y bea principal fibration with
fibre G acting on X. Then we have :
(@) im (n, (G) » =, (X )) acts trivially on n, (X), and
(b) my (X) acts trivially on im (n, (G) — =, (X)).

Proof. For (a) we have the following commutative diagram induced

by a covering transformation T : G — G.
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