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(4.4) Remark. The group N = Ty (AA; v) is a central extension of N
(see the appendix) and, as AX v 1s acyclic, satisfies H; (N) = H, (N) = 0.
Therefore N is the universal central extension of N (see [K2]), namely one

has the exact sequence 0 —» H, (N) — ];7 — N — 1. Therefore, if f:X
— X’ is a map such that n, (f) sends the perfect normal subgroup N of
n, (X) isomorphically onto a normal subgroup N’ of m; (X'), then the

induced map Af : AX N = AX v induces an isomorphism on the fundamental
groups.

§5. k-SIMPLE ACYCLIC MAPS

In this section we study acyclic maps having simplicity properties. The
first proposition generalizes some results of Dror [D1, Lemma 3.4].

(5.1) PropOSITION. Let f:X—> Y be a map of path connected
spaces with 7w, (f) an isomorphism, and let N be a perfect normal
subgroup of my (X) = wn. If f induces an isomorphism H, (X, Z [n/N])
% H, (Y, Z [n/N]) and an isomorphism m;(X) > n,(Y) for i <k — 1,
then | :

(M) 7. (f) : 1 (X) » . (Y) is an epimorphism when N acts trivially
on 1w, (Y), and

2) 7. (f) : 1 (X) = 7, (Y) is an isomorphism when N acts trivially
on m(X) and 7, (Y).

Proof. Let F— X v be the homotopy fibre of the covering map ; : A; N

- );N. By' hypothesis it follows easily that fN induces an isomorphism on
integral homology and on 7; (X) — =, (Y) for i £ k — 1. From the Serre

spectral sequence we have Ho (Yy, Hy_; (F)) = H, (N, Hy_{ (F)) = 0.

Since Hy_; (F) = m,_; (F) is a quotient of =, (Y) on which the perfect

group N acts trivially, it follows that =, _; (F) = 0, which proves (1). '
Under the hypothesis of (2) we have x;(F) = 0 for i < k and

H, (Yy, Hy (F)) = H, (N, m, (F)) = 0. Since N acts trivially on =, (X)
the induced morphlsm 7, (F) = 7, (X) must be trivial, which proves the
proposition.

The following lemma, proved in [D2, Lemma 2. 6], follows easily from
the homology exact sequence.
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Hy(G,M") > Hy(G,M') - Ho (G, M) - Hy (G, M") > 0

(5.2) LEMMA. Let 0 > M' > M —» M" - 0 be a_short exact sequence
of Z [Gl-modules where G is a perfect group. Then M’ cmd M" are trivial
G-modules if and only if M is a trivial G-module. .

(5.3) DEFINITION. A space X is k-simple provided m, (X) acts trivially
on m (X). A map f X > Y is k-simple provided ker ny (f) < my (X)

acts trivially on m, (X ).
(5.4) PROPOSITION. Let f:X— Y be a map with homotopy Cﬁbre A
where 71 (A) is perfect. Then f is k-simple if and only if A is k-simple.
Proof. In the homotopy exact sequence of any fibration
T+ 1 (Y) = m (4) > ”k(X) - (Y),

see the appendix, m; (4) acts trivially on im (M4 1(Y) = 7, (4) =
If fis k-simple, then im (7, (4)) = ker (n, (f )) acts trivially on 7, (X ).
Hence 7, (A4) acts trivially on M’ < 7, (4) and on the quotient 7, (4)/ M.
By (5.2), it acts trivially on 7, (4).

Conversely, ker (, (f)) acts trivially on ker (m (f )) € 7 (X) and
trivially on 7, (Y) > im (m, (f ))- By (5.2), ker (ny (f )) acts trivially on
ny (X). This proves the propos1t1on

(5.5) Notations. For a path connected space X and a perfect normal
subgroup N of m; (X), we consider the following conditions:

(Py). The group N acts trivially on 7; (X) for i < k.
(H,). The grdup N acts trivially on H; ()~( ) for i £ k.
- (5.6) PROPOSITION.  For all natural numbers k we have that P, implies
H, and Hy implies P,_y. In particular, H, and P, are equivalent.

Proof Consider the following commutative diagram where the rows
and columns are fibrations.

T~—>A)~(N——>A(BN)

o l

)X;——f X — BN

[
Xy

—> _BN?

F —>s




By (5.4) condition P, implies that =, (A)} y) acts trivially on n; (4Xy)
for i < k. Since AX’N and A (BN) are both’a’cyclic‘and T, (AXy) S

s (A (BN)) is an isomorphism (by (4.4)), we deduce using (5.1) that 7; (4 Xy)
- 7; (4 (BN)) is an isomorphism for i < k. Thus n; (T) = Ofori < k — 1
and 7, (T) is a trivial module =, (4 (BN)) since it is a quotient of
Tevq (4 (BN)) On the other hand, we have H, (n, (4 (BN)), m, (T)) = 0

since 7, (T) = H, (T) and thus H, (AXN) - H, (4 (BN)) is an isomor-

phism. Therefore, n, (T) = 0 and H, (5( ) = H; (F) is an isomorphism for
i £ k. Hence P, implies H, since N acts trivially on H, (F).

. Next, assume H, holds. Then H, (:Y') — H; (F) is an isomorphism for
i = k by the comparision theorem for spectral sequences of fibrations
with trivial actions. Since 7, (F) is abelian, n, (F) = 0 and n; (T) = 0 for

i<k — 1. Hence =, (AXN) acts trivially on (AXN) for i<k — 1.
Using (5.4), we deduce P,_, and the proposition.

(5.7) THEOREM. Let f: X — Y be an acyclic map between CW-spaces
which is k-simple for all k 2 2 with N = ker n, (f). Then the following
is a fiber sequence

X - Y5 [Br, 1%

where o is induced by o :X - Bmn, (X) as in 3.1 and ny () is the
identity.

Proof. As in the previous proposition, we have a diagram of fibrations

— AXy ——> A(BN)

SRR
o
N

Y - [3”1 X )]4&
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We prove X — F is a homotopy equivalence with the same argument used
in (5.6) to show P, implies H,. Since F is also the fibre of Xy — [Br; (X IES
we have proved the theorem.

(5.8) Remark. Using (5.1), we see that for an acyclic map f: X - Y
which is k-simple for all £ = 2, the homotopy groups 7, (Y) can be com-
puted in terms of n, (X) and =, (Br; (X)§) = 7, (BN)™ for i = 2. Some
computations of n, (BN ") for a certain perfect group N can be found for
instance in [H, Chapter 7].

§ 6. -ACYCLIC MAPS INTO A GIVEN SPACE

In this section we study acyclic maps f: X — Y into a fixed space Y.
Two such map f: X — Y and f’ : X’ — Y are called equivalent provided
there is a homotopy equivalence 4 : X —» X’ with f ~ f'h. Let AC(Y)
denote the class of equivalence classes of acyclic f: X - Y over Y where X
and Y are CW-spaces. |

(6.1) DEFINITION. An extension data over a space Y is a triple (P, i, D)
where

(a) @ isanextension 1 > N—> G—mny(Y)—>1 with N perfect,

(b) i:BG — BGY is an acyclic map with ker (my (D)) = N (whose equi-
valence class is well defined by-(3.5)), and

() ¢ :Y - BGy is a2-connected map.

Two triples of extension data (®, i, ¢) and (&', i’, ¢') are called equi- |
valent provided there exists an isomorphism g : G — G’ making the follow-
ing diagrams commutative (up to homotopy for the second one).

Bg

BG 2. BG
¢ 2 ¢ i’l l i
B
\\ // BG: 2% B(GH:
. X oA
m (Y) E\ yt

Y
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