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§ 4. THE HOMOTOPY FIBRE OF THE PLUS CONSTRUCTION

(4.1) THEOREM. Let u:AX — X be the fibre of X - X* for a
CW-space X. Then for any map f: W — X from an acyclic CW-space W
into X, thereisamap f': W — AX with uf' ~ f and f is unique up to
homotopy.

Proof. We have the following diagram where the lower row is a fibre
sequence.

" lf
e

+\ - 0 7+
QX)) —> AX — X — X

Since ; (W) is perfect and 7y (X ™) contains no nonzero perfect subgroups,
my (0 f) is zero and by (3.2) the map 6 f'is null homotopic. Then there is a
map f': W — AX with uf’ ~ f. Two factorizations f' of f differ by the
action of a map W — Q (X). Since again n; (W) is perfect and 7, (Q (X))
abelian, 7, of this map is zero so by (3.2) the map is null homotopic. Hence
S/’ 1s unique, and this proves the theorem.

(4.2) Remark. Dror introduced the map 4X — X having the universal
property given in the previous theorem and proved for each CW-space X
the map AX — X existed. He used a Posnikov tower construction starting
with the covering of X corresponding to the maximal perfect normal sub-
group of m; (X). By (2.5) we see that we can recover X — X ¥ as the cofibre
of AX - X.

All the properties of AX listed in [D1, Theorem 2.1] can be shown using
the fact that 4X is the fibre of X — X *. For instance we will in (5.4) give }
- a sharper version of [D1, Theorem 2.1 @1v)]. -

4.3) Remark. The Posnikov tower construction for AX — X, when

done in the category of simplicial sets, is functorial for maps of simplicial

sets. For CW-spaces we obtain a functorial AX — X for maps using the
geometric realization of simplicial sets. Since we can choose X — X} to

be the cofibre of A4 (X’N) — X, we obtain a sharper version of the func-
toriality in (3.7) and (3.8), namely on the level of spaces and maps.
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(4.4) Remark. The group N = Ty (AA; v) is a central extension of N
(see the appendix) and, as AX v 1s acyclic, satisfies H; (N) = H, (N) = 0.
Therefore N is the universal central extension of N (see [K2]), namely one

has the exact sequence 0 —» H, (N) — ];7 — N — 1. Therefore, if f:X
— X’ is a map such that n, (f) sends the perfect normal subgroup N of
n, (X) isomorphically onto a normal subgroup N’ of m; (X'), then the

induced map Af : AX N = AX v induces an isomorphism on the fundamental
groups.

§5. k-SIMPLE ACYCLIC MAPS

In this section we study acyclic maps having simplicity properties. The
first proposition generalizes some results of Dror [D1, Lemma 3.4].

(5.1) PropOSITION. Let f:X—> Y be a map of path connected
spaces with 7w, (f) an isomorphism, and let N be a perfect normal
subgroup of my (X) = wn. If f induces an isomorphism H, (X, Z [n/N])
% H, (Y, Z [n/N]) and an isomorphism m;(X) > n,(Y) for i <k — 1,
then | :

(M) 7. (f) : 1 (X) » . (Y) is an epimorphism when N acts trivially
on 1w, (Y), and

2) 7. (f) : 1 (X) = 7, (Y) is an isomorphism when N acts trivially
on m(X) and 7, (Y).

Proof. Let F— X v be the homotopy fibre of the covering map ; : A; N

- );N. By' hypothesis it follows easily that fN induces an isomorphism on
integral homology and on 7; (X) — =, (Y) for i £ k — 1. From the Serre

spectral sequence we have Ho (Yy, Hy_; (F)) = H, (N, Hy_{ (F)) = 0.

Since Hy_; (F) = m,_; (F) is a quotient of =, (Y) on which the perfect

group N acts trivially, it follows that =, _; (F) = 0, which proves (1). '
Under the hypothesis of (2) we have x;(F) = 0 for i < k and

H, (Yy, Hy (F)) = H, (N, m, (F)) = 0. Since N acts trivially on =, (X)
the induced morphlsm 7, (F) = 7, (X) must be trivial, which proves the
proposition.

The following lemma, proved in [D2, Lemma 2. 6], follows easily from
the homology exact sequence.
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