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§4. The homotopy fibre of the plus construction

(4.1) Theorem. Let u : AX -» X be the fibre of X -> X+ for a
CW-space X. Then for any map f : W -> X from an acyclic CW-space W
into X, there is a map f : W -> AX with uf'~f and f is unique up to
homotopy.

Proof We have the following diagram where the lower row is a fibre
sequence.

W

r/ f
/
Q(X+) —* AXX

Since W) is perfect and nl (X+) contains no nonzero perfect subgroups,

ni ißf) is zero and by (3.2) the map Of is null homotopic. Then there is a

map /' : W -> AX with uf ~ f Two factorizations / 'of/ differ by the
action of a map W -> Q (X+). Since again n1 (W) is perfect and n1 (Q (X+))
abelian, n1 of this map is zero so by (3.2) the map is null homotopic. Hence

/' is unique, and this proves the theorem.

(4.2) Remark. Dror introduced the map AX X having the universal
property given in the previous theorem and proved for each CW-space X
the map AX -> X existed. He used a Posnikov tower construction starting
with the covering of X corresponding to the maximal perfect normal
subgroup of %1 {X). By (2.5) we see that we can recover X - X+ as the cofibre
of AX-+X.

All the properties of AX listed in [Dl, Theorem 2.1] can be shown using
the fact that AX is the fibre of X -> X+. For instance we will in (5.4) give
a sharper version of [Dl, Theorem 2.1 (iv)].

(4.3) Remark. The Posnikov tower construction for AX - X, when
done in the category of simplicial sets, is functorial for maps of simplicial
sets. For CW-spaces we obtain a functorial AX -» X for maps using the
geometric realization of simplicial sets. Since we can choose X -> X\ to

be the cofibre of A (XN) -» X, we obtain a sharper version of the func-
toriality in (3.7) and (3.8), namely on.the level of spaces and maps.
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(4.4) Remark. The group TV 7t± (AXN) is a central extension of TV

(see the appendix) and, as AXN is acyclic, satisfies H1 (TV) H2 (TV) 0.

Therefore TV is the universal central extension of TV (see [K2]), namely one

has the exact sequence 0 -> H2 (TV) -> TV -> TV - 1. Therefore, if / : X
-> X' is a map such that 71! (/) sends the perfect normal subgroup TV of
7r± (X) isomorphically onto a normal subgroup TV' of 71! (X'), then the

induced map Af : AXN A(X^ induces an isomorphism on the fundamental

groups.

§ 5. fc-SIMPLE ACYCLIC MAPS

In this section we study acyclic maps having simplicity properties. The
first proposition generalizes some results of Dror [Dl, Lemma 3.4].

(5.1) Proposition. Let f : X -> Y be a map of path connected

spaces with nl (/) an isomorphism, and let TV be a perfect normal
subgroup of n1 (X) n. If f induces an isomorphism H* (X, Z [77:/TV])

^ H% (Y, Z [71/TV]) and an isomorphism nt (X) ^4 7rf (T) for i ^ k — 1,

then

(1) 7xk (/) : 7ik (X) -> nk (Y) is an epimorphism when TV acts trivially
on nk Y), and

(2) nk(f) : nk (X) nk(Y) is an isomorphism when TV acts trivially
on nk (X) and nk(Y).

Proof Let F XN be the homotopy fibre of the covering map f : XN

-» Tjy. By hypothesis it follows easily that / induces an isomorphism on
integral homology and on 7rf (X) -> 7^ (7) for i ^ k - 1. From the Serre

spectral sequence we have H0 YN, TTfc_! (F)) TT0 (N,Hk^1 (F)) 0.
Since Hk_1 (F) nk_1 (F) is a quotient of nk(Y) on which the perfect
group TV acts trivially, it follows that nk^1 (F) 0, which proves (1).

Under the hypothesis of (2) we have nt(F) 0 for i < k and

H0 YN9 Hk (F)) H0 (TV, 7ik (F)) 0. Since TV acts trivially on nk (X)
the induced morphism nk (F) -> %k (X) must be trivial, which proves the
proposition.

The following lemma, proved in [D2, Lemma 2.6], follows easily from
the homology exact sequence.
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