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§ 2. Induced and coinduced acyclic maps

(2.1) Proposition. Let be two maps.
If f and g are acyclic, then gf is acyclic. If f and gf are acyclic, then
g is acyclic.

Proof Consider a local system LonZ, and using g*L on
ClfY'I. on X, we apply (1.2) (b) to obtain the proposition.

(2.2) Proposition. Consider the following cartesian square where
either f or g is a fibration.

Y' XyY

/' „
Y'

X

f

If f is acyclic, then f is acyclic.

Proof. Since either/or gf is a fibration, we can change the other to be a
fibration, if necessary, without changing the homotopy type of any of
the four spaces. Now the homotopy fibre F of is the actual fiber and F
is also the homotopy fibre of/'. Now apply (1.2) (a).

(2.3) Proposition. Consider the following cocartesian square where
either f or g is a cofibration.

S

f X'UY= Y'
- x

X'

If f is acyclic, then f is acyclic.

Proof. Since either/ or gis a cofibration, we can change the other to
be a cofibration, if necessary, without changing the homotopy type of any
of the four spaces. Hence each map is an injection, and for a local coefficient
system L on Y', we have two long exact sequences in homology

* Hq(X,f*g'* L)—-v Hq(Y,f'*L) > Hq(Y,X; f'*L) —>J «

Hq(X', g'*L) Hq(Y',L)

(.9s 9

HJY',X';L)
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By hypothesis (1.2) (b) the morphism /* is an isomorphism and thus

(Y,X;f'*L)0. By excision (g, g% is an isomorphism and thus

Y',X';L) 0. Hence f'% is an isomorphism and criterion (1.2) (b)

is satisfied for/' to be an acyclic map which proves the proposition.

The previous proposition concerning acyclic maps in a cofibration will

be the basic tool for most of the results which follow in sections 2 and 3.

It was pointed out to us by Quillen.

(2.4) Proposition. Consider the following diagram of CW-spaces.

fX

g g

X' Y'

If g and g' are acyclic, and if (/) and (/') are isomorphisms

then the diagram is cocartesian up to homotopy equivalence.

Proof First replace / and g by equivalent cofibrations and form
h : X'\j xY-> Y'.Themap g": F - X'uXisan acyclic map by (2.3)

and g' hg". Thus h is acyclic by (2.1).

Since 7t! (/) is an isomorphism, it follows that/" : X' -* X' u Y has

the property that If") is an isomorphism ,by the van Kampen theorem

and/' hf". Thus 7tj (h) is an isomorphism. Now apply (1.5) to see that h

is a homotopy equivalence. This proves the proposition.

(2.5) Theorem. Let f : X -* Y be an acyclic map between CW-spaces

with homotopy fibre g :F-*X.Thenf is the homotopy cofibre of

Proof Let CP be the cone over F. The homotopy cofibre of
X is homotopy equivalent to CF u FX and we have the cocartesian

square

F X S+ Y

CF C

Since fg ~ *, it follows that we have a map h : C -> Y such that / ^ hv.

Since / is acyclic, the map F-»•CF is acyclic and, by (2.3) v is acyclic. One
deduces then, by (2.1) that h is acyclic. As is onto (1.3), one has:

ker (7t! h))v (ker 7^ (/)) v (Im 1
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So n1 (A) is injective and, by (1.3) and (1.5), A is a homotopy equiva-
lence.

(2.6) Theorem. Let f : X -> Y be an acyclic map between CW-spaces
and let huh2 : Y Z be two maps. If h^f ~ h2f then it follows that
K ~ h2.

Proof By (2.5) we have cofibre sequence

F-- x — >y > AF

where AFis the reduced suspension of the acyclic space F. Since AF is

simply connected and {AF) 0, it is contractible, and the group
[AF, Z] in the Puppe sequence is zero.

In general, the group [AF, Z] acts transitively on the fibres of the function

[ Y, Z\ -+ [X, Z], so that in this case, [X, Z] is injective.
This proves the theorem.

§ 3. Classification of acyclic map from a given space

Let Xbea path connected space. To each acyclic map we
assign the kernel of n1 f : n1 X)—> nl Y) which is a perfect normal
subgroup of nx (X) by (1.3). The object of this section is to show that this
map from isomorphism classes of acyclic maps defined on X to perfect
normal subgroups of 7t1 (X) is a bijection.

(3.1) Proposition. Let f : X -* Yand -> be two maps
between CW-spaces such that f is acyclic. There exists a map h : Y-> Y'
with hf ~f if and only if ker nt (/) c ker it, (/'), and such an h is
unique up to homotopy. In addition, iff is acyclic, then h is acyclic, and h
is a homotopy equivalence if and only if ker nx (/) ker (/').

Proof. If hexists, then n1(/') 7^ (A) o and we have
ker 711 if) ç ker 7t^ f Conversely, we can suppose is a cofibration
and form the cocartesian diagram

/' „
9'

Y'uxY
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