Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ACYCLIC MAPS

Autor: Hausmann, Jean-Claude / Husemoller, Dale

Kapitel: §2. Induced and coinduced acyclic maps

DOI: https://doi.org/10.5169/seals-50372

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 21.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§ 2. INDUCED AND COINDUCED ACYCLIC MAPS

(2.1) PROPOSITION. Let $f: X \to Y$ and $g: Y \to Z$ be two maps. If f and g are acyclic, then g is acyclic. If f and g are acyclic, then g is acyclic.

Proof. Consider a local system L on Z, and using g*L on Y f*g*L = (gf)*L on X, we apply (1.2) (b) to obtain the proposition.

(2.2) Proposition. Consider the following cartesian square where either f or g is a fibration.

$$\begin{array}{ccc} Y' \times_{Y} Y & \xrightarrow{g'} & X \\ f' & \downarrow & & \downarrow f \\ Y' & \xrightarrow{g} & Y \end{array}$$

If f is acyclic, then f' is acyclic.

Proof. Since either f or g is a fibration, we can change the other to be a fibration, if necessary, without changing the homotopy type of any of the four spaces. Now the homotopy fibre F of f is the actual fiber and F is also the homotopy fibre of f'. Now apply (1.2) (a).

(2.3) Proposition. Consider the following cocartesian square where either f or g is a cofibration.

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ g & \downarrow & \downarrow g' \\ X' & \stackrel{f'}{\longrightarrow} & X' \cup Y = Y' \end{array}$$

If f is acyclic, then f' is acyclic.

Proof. Since either f or g is a cofibration, we can change the other to be a cofibration, if necessary, without changing the homotopy type of any of the four spaces. Hence each map is an injection, and for a local coefficient system L on Y', we have two long exact sequences in homology

$$\longrightarrow H_{q}(X, f^{*}g'^{*}L) \xrightarrow{f_{*}} H_{q}(Y, f'^{*}L) \longrightarrow H_{q}(Y, X; f'^{*}L) \longrightarrow \dots$$

$$\downarrow g_{*} \qquad \qquad \downarrow (g, g')_{*}$$

$$\longrightarrow H_{q}(X', g'^{*}L) \xrightarrow{f'_{*}} H_{q}(Y', L) \longrightarrow H_{q}(Y', X'; L) \longrightarrow \dots$$

By hypothesis (1.2) (b) the morphism f_* is an isomorphism and thus $H_*(Y, X; f'^*L) = 0$. By excision $(g, g')_*$ is an isomorphism and thus $H_*(Y', X'; L) = 0$. Hence f'_* is an isomorphism and criterion (1.2) (b) is satisfied for f' to be an acyclic map which proves the proposition.

The previous proposition concerning acyclic maps in a cofibration will be the basic tool for most of the results which follow in sections 2 and 3. It was pointed out to us by Quillen.

(2.4) Proposition. Consider the following diagram of CW-spaces.

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
g \downarrow & & \downarrow g' \\
X' & \xrightarrow{f'} & Y'
\end{array}$$

If g and g' are acyclic, and if $\pi_1(f)$ and $\pi_1(f')$ are isomorphisms then the diagram is cocartesian up to homotopy equivalence.

Proof. First replace f and g by equivalent cofibrations and form $h: X' \cup_X Y \to Y'$. The map $g'': Y \to X' \cup_X Y$ is an acyclic map by (2.3) and g' = hg''. Thus h is acyclic by (2.1).

Since $\pi_1(f)$ is an isomorphism, it follows that $f'': X' \to X' \cup_X Y$ has the property that $\pi_1(f'')$ is an isomorphism by the van Kampen theorem and f' = hf''. Thus $\pi_1(h)$ is an isomorphism. Now apply (1.5) to see that h is a homotopy equivalence. This proves the proposition.

(2.5) THEOREM. Let $f: X \to Y$ be an acyclic map between CW-spaces with homotopy fibre $g: F \to X$. Then f is the homotopy cofibre of g.

Proof. Let CF be the cone over F. The homotopy cofibre C of $g: F \to X$ is homotopy equivalent to $CF \cup_F X$ and we have the cocartesian square

Since $fg \simeq *$, it follows that we have a map $h: C \to Y$ such that $f \simeq hv$. Since f is acyclic, the map $F \to CF$ is acyclic and, by (2.3) v is acyclic. One deduces then, by (2.1) that h is acyclic. As π_1 (h) is onto (1.3), one has:

$$\ker(\pi_1(h)) = v(\ker \pi_1(f)) = v(\operatorname{Im} \pi_1(g)) = 1$$

So $\pi_1(h)$ is injective and, by (1.3) and (1.5), h is a homotopy equivalence.

(2.6) THEOREM. Let $f: X \to Y$ be an acyclic map between CW-spaces and let $h_1, h_2: Y \to Z$ be two maps. If $h_1 f \simeq h_2 f$, then it follows that $h_1 \simeq h_2$.

Proof. By (2.5) we have cofibre sequence

$$F \stackrel{g}{\longrightarrow} X \stackrel{f}{\longrightarrow} Y \longrightarrow \Delta F$$

where ΔF is the reduced suspension of the acyclic space F. Since ΔF is simply connected and $H_*(\Delta F) = 0$, it is contractible, and the group $[\Delta F, Z]$ in the Puppe sequence is zero.

In general, the group $[\Delta F, Z]$ acts transitively on the fibres of the function $[Y, Z] \to [X, Z]$, so that in this case, $[Y, Z] \to [X, Z]$ is injective. This proves the theorem.

§ 3. Classification of acyclic map from a given space

Let X be a path connected space. To each acyclic map $f: X \to Y$, we assign the kernel of $\pi_1(f): \pi_1(X) \to \pi_1(Y)$ which is a perfect normal subgroup of $\pi_1(X)$ by (1.3). The object of this section is to show that this map from isomorphism classes of acyclic maps defined on X to perfect normal subgroups of $\pi_1(X)$ is a bijection.

(3.1) PROPOSITION. Let $f: X \to Y$ and $f': X \to Y'$ be two maps between CW-spaces such that f is acyclic. There exists a map $h: Y \to Y'$ with $hf \simeq f'$ if and only if $\ker \pi_1(f) \subset \ker \pi_1(f')$, and such an h is unique up to homotopy. In addition, if f' is acyclic, then h is acyclic, and h is a homotopy equivalence if and only if $\ker \pi_1(f) = \ker \pi_1(f')$.

Proof. If h exists, then $\pi_1(f') = \pi_1(h) \circ \pi_1(f)$ and we have $\ker \pi_1(f) \subset \ker \pi_1(f')$. Conversely, we can suppose f is a cofibration and form the cocartesian diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
f' \downarrow & \downarrow g' \\
Y' & \xrightarrow{g} & Y' \cup_X Y
\end{array}$$