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§ 2.© INDUCED AND COINDUCED ACYCLIC MAPS

(2.1) PROPOSITION. Let f: X —> Y and g:Y—>Z be two maps.
If f and g are acyclic, then gf is acyclic. If f and gf are acyclic, then
g is acyclic.

Proof. Consider a local system L on Z, and using g*L on Y f*g*L
= (gf)*L on X, we apply (1.2) (b) to obtain the proposition.

(2.2) PrROPOSITION.  Consider the following cartesian square where
either f or g is a fibration. |
\ ”

Y’ ny Ea— X

] |7
vy sy
If f is acyclic, then f' is acyclic.

Proof.  Since either for g is a fibration, we can change the other to be a
fibration, if necessary, without changing the homotopy type of any of
the four spaces. Now the homotopy fibre F of f is the actual fiber and F
18 also the homotopy fibre of /. Now apply (1.2) (a).

(2.3) PROPOSITION. Consider the following cocartesian square where
either f or g is a cofibration.

[
X — Y

g l | l g’
x I xuy=vy
' ¢
If f is acyclic, then f' is acyclic

Proof Since either f or g is a cofibration, we can change the other to
be a cofibration, if necessary, without changing the homotopy type of any
- of the four spaces. Hence each map is an injection, and for a local coefficient
system L on Y’, we have two long exact sequences in homology

— H,(X.f*¢'*L) — H, (Y,f'*L) —s H (Y, X; f'*L) —>

ig* . e lg* R l(g,g_)* |
£y o Ty
— H,(X',g'*L) —> H,(Y',L) —— Hy(Y',X’;L) —> ...
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By hypothesis (1.2) (b) the morphism f, is an isomorphism and thus
H, (Y, X;f'*L) = 0. By excision (g, g')« is an isomorphism and thus
H, (Y', X';L) = 0. Hence f', is an isomorphism and criterion (1.2) (b)
is satisfied for £/ to be an acyclic map which proves the proposition.

The previous proposition concerning acyclic maps in a cofibration will
be the basic tool for most of the results which follow in sections 2 and 3.
It was pointed out to us by Quillen.

(2.4) PROPOSITION. Consider the following diagram of CW-spaces.
f

X — Y
g l | l g’
I
X’ —_— Y,

If g and g’ are acyclic, and if m; (f) and =, (f') are isomorphisms
then the diagram is cocartesian up to homotopy equivalence.

Proof. First replace f and g by equivalent cofibrations and form
h:X' UxY— Y. The map g”: Y - X' U xY is an acyclic map by (2.3)
and g’ = hg". Thus h is acyclic by (2.1).

Since 7, (f) is an isomorphism, it follows that f” : X’ — X’ U xY has
the property that 7, (f") is an isomorphism by the van Kampen theorem
and £’ = hf". Thus =, () is an isomorphism. Now apply (1.5) to see that 2
is a homotopy equivalence. This proves the proposition.

(2.5) THEOREM. Let f: X — Y be an acyclic map between CW-spaces
with homotopy fibre g : F — X. Then f is the homotopy cofibre of g.

Proof. Let CF ‘be the cone over F. The homotopy cofibre C of g : F
— X is homotopy equivalent to CF U X and we have the cocartesian

square

F"—g—>X—f—»Y

| | 7
? /
' /
CF — C

Since fg =~ *, it follows that we have a map & : C — Y such that f ~ hv.
Since fis acyclic, the map F — CF is acyclic and, by (2.3) v is acyclic. One
deduces then, by (2.1) that % is acyclic. As n; (k) is onto (1.3), one has:

ker (ny (h)) = v (kermy (f)) = v(Imn, (9)) = 1
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So 7y (h) is injective and, by (1.3) and ' (1.5), & is a homotopy equiva-
lence. ‘ S ‘

(2.6) THEOREM. Let f: X —» Y be an acyclic map between CW-spaces
and let hy,h, : Y > Z be two maps. If hyf ~ h,f,  then it follows that
hl g hz.

Proof. By (2.5) we have cofibre sequence

Flx Ly, uF
where AF is the reduced suspension of the acyclic space F. Since AF is

simply connected and H, (4F) = 0, it is contractible, and the group
[4F, Z] in the Puppe sequence is zero. |

In general, the group [4F, Z] acts transitively on the fibres of the func-
tion [Y, Z] - [X, Z], so that in this case, [Y, Z] - [X, Z] is injective.
This proves the theorem.

§ 3. CLASSIFICATION OF ACYCLIC MAP FROM A GIVEN SPACE

Let X be a path connected space. To each acyclic map f: X — Y, we
assign the kernel of =, (f) : 7, (X) — ny (Y¥) which is a perfect normal
subgroup of 7, (X) by (1.3). The object of this section is to show that this
map from isomorphism classes of acyclic maps defined on X to perfect
normal subgroups of 7, (X) is a bijection.

(3.1) PROPOSITION. Let f:X - Y and f':X - Y' be two maps
between CW-spaces such that f is acyclic. There exists a map h:Y — Y’
with hf ~ ' if and only if ker n, (f) < kermy (f'), and such an h is
unique up to homotopy. In addition, if’ f' is acyclic, then h is c;cyclz'c, and h
is a homotopy equivalence if and only if ker n, (f) = ker n, (f).

Proof. If h exists, then =, (f') = m, (i) o7y (f) and we have
ker m; (f) < ker n; (f’). Conversely, we can suppose f is a cofibration
and form the cocartesian diagram

x Ly
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