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§ 1. Acyclic maps and homotopy equivalences

We will use the terminology CW-spacefor a space having the homotopy

type of a CW-complex.The category of CW7-spaces is the largest category

of spaces for which the Whitehead characterization of homotopy equi-

valences holds.

(1.1) Definition. A space X is acyclic provided the integral reduced

homology H* (-3T) 0.

In particular, an acyclic space X is path connected, its fundamental

group nt X)is perfect, i.e. n1 X)is equal to its commutator subgroup, and

for any constant coefficient module L it follows that //* L) 0. Recall

that a local coefficient system L on X is a module over (X) and thatX,L) H* (C, (X) ®Zä1(x)

where C, (X) is the chain complex over Z viewed as a Znt (F)-module.

In general, H (X,L)#0for an acyclic space and a local coefficient system

(1.2) Definition/Proposition. A map f: X ^ Y between path

connected spaces is acyclic provided any of the following equivalent conditions

hold:

(a) The homotopy fibre F of f : X -* Y is an acyclic space.

(b) For any local coefficient system L on Y the induced morphismf*"• (X,f*L)-*H(F,L)

is an isomorphism where f*L is the induced local system on X.

(c) The induced morphism

f*'• H*(X,f*Znl(Y))-* fl* (T, Zrt! (Y))

is an isomorphism.

(d) For the universal covering Y -> Y of Y the map Y

defined by f induces an isomorphism
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Proof. For (a) implies (b), we use the Serre spectral sequence for the
i ffibration F -+ X -> Y where

E2 H* (Y, H* (F,i*f* D) H* (X,f* L).

Since i*f*L is trivial on F, statement (a) gives H* (F, i*f*L) 0 and
the edge morphism H* (X,f*L) -» // (T,L) £*,o> which is induced
by/, is an isomorphism.

Clearly (b) implies (c), which is a special case of (b), and for (c) implies
(d) we use the following morphism of fibrations

71=7Ii (7)

V\
X xyY Y

This induces a morphism of the Serre spectral sequences which on the
i?2-level is the given isomorphism from (c)

E2Ht (X,f*Zn1 (7)) - (7, (7)) E2

Hence by the spectral mapping theorem x -* (7) is an
isomorphism.

For (d) implies (a), note that F -* Xxy is the fibre of x -*
Since //. A' x YY) ->• II... 7) is an isomorphism on the horizontal edge

of the spectral sequence, we see H0 (F) 0. Moreover, assuming inductively

that Hj(F)0 for i<n, we deduce that Hn (F) 0 by looking
at the spectral sequence terms Efnwhich is H„ (F) for 2 and zero for
r > n +1. This completes the proof the equivalence of (a), (b), (c), and (d).

(1.3) Proposition. If f :X->7 is an acyclic map, then /# : (X)
n1(7) is an epimorphism with kernel a perfect normal subgroup.

Proof. Since the fibre F of/is connected, the induced homomorphism
/* is an epimorphism, and since n1(F) is perfect, ker //) im (F)
-» ttt (Xj) is perfect.
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(1.4) Proposition. Let f: X—> be a between path connected

spaces. Then iit(/) :iq(X) -» tc; (F) w an isomorphism for all (SO
if and only if f is acyclic and nx (/) « an isomorphism:

Proof. Let F -> X be the homotopy fibre of/. The second conditions

say that nt(F) is perfect and abelian respectively. Thus nl (F) 0 and

on simply connected spaces F the homotopy (F) 0 if and only if the

homology Ht (F) 0. The proposition follows now from an application

of the homotopy exact sequence.

(1.5) Corollary. A map f:X->Y between path connected CW-

spaces is a homotopy equivalence if and only if f is acyclic and nx (/)
an isomorphism.

This is an immediate application of the Whitehead criterion for homotopy

equivalence applied to (1.4).

In section 3 we will see that the subgroups ker (71, (/)) classify acyclic

maps f : X -* Y from X.

(1.6) Remark. Cohomology with local coefficients can be used to
characterize acyclic maps. As with homology

H* (X, L) H* (Homz„l(X) (C* (X), L))

defines cohomology with local coefficients. Then a map / : X ->• Y
between path connected spaces is acyclic if and only if/* :H*(Y,L)
-> H* (X,f*L) is an isomorphism for each local coefficient system L on
Y. The direct implication is checked exactly as (a) implies (b) using

cohomology in (1.2). Conversely we show that I xy7-> 7 defined by/induces

an isomorphism H* (T) H* (Jxy7). This is done as (c) implies (d)

in (1.2) and as in (d) implies (a) in (1.2) we have if* (.F) 0. Using the

universal coefficient theorem, we deduce that (F) 0 and F is acyclic.
The cohomology characterization of acyclic maps is useful in obstruction

theory.

(1.7) Remark. Let / : X -» Y be an acyclic map and Y a connected

covering of Y. Then the induced map f : X x yY Y is also acyclic.
This follows directly from (1.2, (d)) or from the fact that / and / have the

same fibre. When Fis the universal covering, of Y, the space X x yF XN
is the covering of X with fundamental group N ker (nl (/)).
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