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§1. ACYCLIC MAPS AND HOMOTOPY EQUIVALENCES

We will use the terminology CW-space for a space having the homotopy
type of a CW-complex. The category of CW-spaces is the largest category
of spaces for which the Whitehead characterization of homotopy equi-

valences holds.

(1.k1) DEFINITION. A space X is acyclic provided the integral reduced

homology H, (X) =0.
In particular, an acyclic space X is path connected, its fundamental
group 7, (X) is perfect, i.e. 7y (X) is equal to its commutator subgroup, and

for any constant coefficient module L it follows that H, (X, L) = 0. Recall
that a local coefficient system L on X is a module over 7y (X ) and that

H* (Xa L) = H* (C* (X) ®Z7t1(X) L)
where C, (X) is the chain complex over Z viewed as a Z m; (Y)-module.
In general, I:I (X,L) # Oforan aéyclic space and a local coefficient system L.
(1.2) DEFINITION/PROPOSITION. A map f:X—>Y  between path

connected spaces is acyclic provided any of the following equivalent conditions
hold :

(a) The homotopy fibre F of f:X — Y is an acyclic space.
(b) For any local coefficient system L on Y the induced morphism
fuiHy (X,f*L) > H, (Y,L)
is an isomorphism where f*L is the induced local system on X.
(c) The induced morphism
foiHy (X,f*Zny (Y)) » Hy (Y, Zny (Y))
is an isomorphism.

(d) For the universal covering I~’—> Y of Y the map X X3Y > Y
defined by f induces an isomorphism

H, (X xyY) > H, ().
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Proof. F or (a) implies (b) we use the Serre spectral sequence for the
fibration F - X —+ Y where

E* = H, (Y,H, (F,i*f*L))= H, (X,f*L).

Since i* f*L is trivial on F, statement (a) gives H, (F,i*f*L) = 0 and
the edge morphism H, (X, f*L) - H, (Y,L) = E% ,, which is induced
by £, is an isomorphism.

Clearly (b) implies (c), which is a spec:1a1 case of (b), and for (c) implies.
(d) we use the following morphism of fibrations

n =7,(Y) |
7\ '
TN
X xyY —> Y |
f
X — Y.

This induces a morphism of the Serre spectral sequences which on the
E*-level is the given isomorphism from (c)

E? = H, (X,f*Zrn,(Y)) > H, (Y, Zn,(Y)) = E*.

Hence by the spectral mapping theorem H, (X ><YY) - H, (Y) is an
isomorphism.

For (d) implies (a), note that F — X X YY is the fibre of X X YY, - Y.A

Since H, (XX YIF;) - H, (IN’) 1S an isomorphism on the horizontal edge

of the spectral sequence, we see H, (F) = 0. Moreover, assuming induc-

tively that I} ;(F) = 0 for i < n, we deduce that INJ,, (F) = 0 by looking |
at the spectral sequence terms E; , which is H, (F) for r = 2 and zero for |
r > n + 1. This completes the proof the equivalence of (a), (b), (c), and (d). |

(1.3) ProPOSITION. If f: X = Y isan acyclic map, then f, :m, (X)
-1 (Y) is an epzmorphzsm with kernel a perfect normal subgroup.

Proof. Since the ﬁbre F of fis connected, the induced homomorphlsm
[« 1s an epimorphism, and since =, (F) is perfect ker (f,) = im (n, (F)
- 7, (X)) is perfect.
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(1.4) PROPOSITION. Let f: X — Y be a map between path connected
spaces. Then m;(f) :m;(X) > n;(Y) is an isomorphism for all iz0
if and only if f is acyclic and 7y (f) is an isomorphism.’

Proof. Let F— X ‘be the homotopy fibre of . The second conditions

say that 7, (F) is perfect and abelian respectively. Thus 7, (F) = 0 and
on simply connected spaces F the homotopy =; (F) = 0 if and only if the

homology I~{i (F) = 0. The proposition follows now from an application
of the homotopy exact sequence.

(1.5) COROLLARY. A map f:X— Y between path connected CW-
spaces is a homotopy equivalence if and only if f is acyclic and ny (f) is
an isomorphism.

This is an immediate application of the Whitehead criterion for homo-
topy equivalence applied to (1.4). '

In section 3 we will see that the subgroups ker (m, (f )) classify acyclic
maps f: X — Y from X.

(1.6) Remark. Cohomology with local coefficients can be used to
characterize acyclic maps. As with homology

H* (X, L) = H* (Homg,(x, (C* (X), L))

defines cohomology with local coefficients. Then a map f: X = Y
between path connected spaces is acyclic if and only if f* : H* (Y, L)
— H* (X, f*L) is an isomorphism for each local coefficient system L on
Y. The direct implication is checked exactly as (a) implies (b) using coho-

mology in (1.2). Conversely we show that X X Yf’ > Y defined by finduces
an isomorphism‘ H* (INf) — H* (XX YIN’). This is done as (c) implies (d)
in (1.2) and as in (d) implies (a) in (1.2) we have H* (F) = 0. Using the
universal coefficient theorem, we deduce that I}* (F) = 0 and Fis acyclic.

The cohomology characterization of acyclic maps is useful in obstruc-
tion theory.

(1.7) Remark. Let f:X — Y be an acyclic map and Y a connected
covering of Y. Then the induced map f:X X,Y— Y is also acyclic. -
This follows directly from (1.2, (d)) or from the fact that f and f have the

same fibre. When Y is the universal covering of Y, the spacé‘ X xy,Y = :YN
is the covering of X with fundamental group N = ker (n, (f)).
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