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ACYCLIC MAPS

by Jean-Claude HAUSMANN and Dale’ HUSEMOLLER

In [K] M. Kervaire shows in the proof of Theorem 3 that by adding
2-cells and 3-cells to a homology sphere one obtains a homotopy sphere.
This is a special case of a general procedure for killing part of the funda-
mental group of a space without changing its homology by adding 2-cells
and 3-cells. |

This technique was rediscovered and developed extensively by Quillen
[Q] under the name “plus construction”. For a space X and a perfect normal
subgroup N of =y (X) there is a map f: X — X3 with n, (f) : 7, (X)
- 7; (Xy) an epimorphism with kernel N and H, (f): H, (X,f*L)
— H, (X, L) an isomorphism for any local coefficient system L on X N
(or equivalently n, (X}) — module L). The space X% can be obtained
from X by adding 2-cells and 3-cells and is unique up to homotopy type.
The homotopy fibre of X — X} is acyclic, and following the terminology
of algebraic geometers, the map is called acyclic. Twisted homology equi-
valence would also be suitable terminology for acyclic map.

The plus construction has already played an important role in many
areas, for example, algebraic K-theory ([Q], [L]), stable homotopy theory
[P], classification of manifolds [H], structures on manifolds ([H-V], [M-S))
and localization theory [V]. Further, Kan and Thurston ([K-T] see also
[B-D-H]) have shown that for any CW-complex X there is a group G with
a normal perfect subgroup N such that X is homotopy equivalent
to K (G, 1)%. ‘

The aim of this paper is to give a general exposition of the basic pro-
perties of acyclic maps following the broad outlines of the subject given
by Quillen. Some of these results in special cases are already in the literature,
see for instance [A], [L] and [W]. The background needed for this paper
consists only of standard material on homotopy theory: fibrations and
cofibrations, Whitehead’s criterion for a map to be a homotopy equivalence,
homotopy sequence of a fibration, and the Serre spectral sequence. On

the other hand, we do not use obstruction theory or semisimplicial tech-
niques.

v
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The paper is organized as follows:

§ 1 and 2. Various definitions of acyclic maps are given and the basic
properties are worked out. '

§ 3. Acyclic maps, ilp to homotopy equivalence, defined on a given
space X are in bijective correspondence with the perfect normal subgroups |
of 7, (X). Functorial aspects of acyclic maps are discussed.

§4. Dror’s functor [D1] is shown to be the homotopy fibre of the
plus construction and the plus construction is the homotopy cofiber of
the Dror map. A strongly functorial plus construction can be deduced
from this.

§ 5. We study acyclic maps f': X — Y with trivial action of ker ny (f) |
on 7, (X). In this situation there is a good relation between m, (X) and
7, (Y) which is not the case for a general acyclic map.

§ 6. We classify acyclic maps f : X —» Y into a fixed space Y for which |
ker 7, (f) acts trivally on =y (X) for i > 2.

For a general acyclic map there is a Dror-Postnikov decomposition of f
generalizing the results of Dror [DI1, D2]. It is an interesting problem to |
classify the n'P-stages of this decomposition in terms of invariants like
those in Dror [D1, D2]. 1)

The authors thank M. Zisman for useful comments on the first version
of this paper. | '
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1) }Results in this direction have been recently obtained by W. Meier.
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§1. ACYCLIC MAPS AND HOMOTOPY EQUIVALENCES

We will use the terminology CW-space for a space having the homotopy
type of a CW-complex. The category of CW-spaces is the largest category
of spaces for which the Whitehead characterization of homotopy equi-

valences holds.

(1.k1) DEFINITION. A space X is acyclic provided the integral reduced

homology H, (X) =0.
In particular, an acyclic space X is path connected, its fundamental
group 7, (X) is perfect, i.e. 7y (X) is equal to its commutator subgroup, and

for any constant coefficient module L it follows that H, (X, L) = 0. Recall
that a local coefficient system L on X is a module over 7y (X ) and that

H* (Xa L) = H* (C* (X) ®Z7t1(X) L)
where C, (X) is the chain complex over Z viewed as a Z m; (Y)-module.
In general, I:I (X,L) # Oforan aéyclic space and a local coefficient system L.
(1.2) DEFINITION/PROPOSITION. A map f:X—>Y  between path

connected spaces is acyclic provided any of the following equivalent conditions
hold :

(a) The homotopy fibre F of f:X — Y is an acyclic space.
(b) For any local coefficient system L on Y the induced morphism
fuiHy (X,f*L) > H, (Y,L)
is an isomorphism where f*L is the induced local system on X.
(c) The induced morphism
foiHy (X,f*Zny (Y)) » Hy (Y, Zny (Y))
is an isomorphism.

(d) For the universal covering I~’—> Y of Y the map X X3Y > Y
defined by f induces an isomorphism

H, (X xyY) > H, ().
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Proof. F or (a) implies (b) we use the Serre spectral sequence for the
fibration F - X —+ Y where

E* = H, (Y,H, (F,i*f*L))= H, (X,f*L).

Since i* f*L is trivial on F, statement (a) gives H, (F,i*f*L) = 0 and
the edge morphism H, (X, f*L) - H, (Y,L) = E% ,, which is induced
by £, is an isomorphism.

Clearly (b) implies (c), which is a spec:1a1 case of (b), and for (c) implies.
(d) we use the following morphism of fibrations

n =7,(Y) |
7\ '
TN
X xyY —> Y |
f
X — Y.

This induces a morphism of the Serre spectral sequences which on the
E*-level is the given isomorphism from (c)

E? = H, (X,f*Zrn,(Y)) > H, (Y, Zn,(Y)) = E*.

Hence by the spectral mapping theorem H, (X ><YY) - H, (Y) is an
isomorphism.

For (d) implies (a), note that F — X X YY is the fibre of X X YY, - Y.A

Since H, (XX YIF;) - H, (IN’) 1S an isomorphism on the horizontal edge

of the spectral sequence, we see H, (F) = 0. Moreover, assuming induc-

tively that I} ;(F) = 0 for i < n, we deduce that INJ,, (F) = 0 by looking |
at the spectral sequence terms E; , which is H, (F) for r = 2 and zero for |
r > n + 1. This completes the proof the equivalence of (a), (b), (c), and (d). |

(1.3) ProPOSITION. If f: X = Y isan acyclic map, then f, :m, (X)
-1 (Y) is an epzmorphzsm with kernel a perfect normal subgroup.

Proof. Since the ﬁbre F of fis connected, the induced homomorphlsm
[« 1s an epimorphism, and since =, (F) is perfect ker (f,) = im (n, (F)
- 7, (X)) is perfect.
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(1.4) PROPOSITION. Let f: X — Y be a map between path connected
spaces. Then m;(f) :m;(X) > n;(Y) is an isomorphism for all iz0
if and only if f is acyclic and 7y (f) is an isomorphism.’

Proof. Let F— X ‘be the homotopy fibre of . The second conditions

say that 7, (F) is perfect and abelian respectively. Thus 7, (F) = 0 and
on simply connected spaces F the homotopy =; (F) = 0 if and only if the

homology I~{i (F) = 0. The proposition follows now from an application
of the homotopy exact sequence.

(1.5) COROLLARY. A map f:X— Y between path connected CW-
spaces is a homotopy equivalence if and only if f is acyclic and ny (f) is
an isomorphism.

This is an immediate application of the Whitehead criterion for homo-
topy equivalence applied to (1.4). '

In section 3 we will see that the subgroups ker (m, (f )) classify acyclic
maps f: X — Y from X.

(1.6) Remark. Cohomology with local coefficients can be used to
characterize acyclic maps. As with homology

H* (X, L) = H* (Homg,(x, (C* (X), L))

defines cohomology with local coefficients. Then a map f: X = Y
between path connected spaces is acyclic if and only if f* : H* (Y, L)
— H* (X, f*L) is an isomorphism for each local coefficient system L on
Y. The direct implication is checked exactly as (a) implies (b) using coho-

mology in (1.2). Conversely we show that X X Yf’ > Y defined by finduces
an isomorphism‘ H* (INf) — H* (XX YIN’). This is done as (c) implies (d)
in (1.2) and as in (d) implies (a) in (1.2) we have H* (F) = 0. Using the
universal coefficient theorem, we deduce that I}* (F) = 0 and Fis acyclic.

The cohomology characterization of acyclic maps is useful in obstruc-
tion theory.

(1.7) Remark. Let f:X — Y be an acyclic map and Y a connected
covering of Y. Then the induced map f:X X,Y— Y is also acyclic. -
This follows directly from (1.2, (d)) or from the fact that f and f have the

same fibre. When Y is the universal covering of Y, the spacé‘ X xy,Y = :YN
is the covering of X with fundamental group N = ker (n, (f)).
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§ 2.© INDUCED AND COINDUCED ACYCLIC MAPS

(2.1) PROPOSITION. Let f: X —> Y and g:Y—>Z be two maps.
If f and g are acyclic, then gf is acyclic. If f and gf are acyclic, then
g is acyclic.

Proof. Consider a local system L on Z, and using g*L on Y f*g*L
= (gf)*L on X, we apply (1.2) (b) to obtain the proposition.

(2.2) PrROPOSITION.  Consider the following cartesian square where
either f or g is a fibration. |
\ ”

Y’ ny Ea— X

] |7
vy sy
If f is acyclic, then f' is acyclic.

Proof.  Since either for g is a fibration, we can change the other to be a
fibration, if necessary, without changing the homotopy type of any of
the four spaces. Now the homotopy fibre F of f is the actual fiber and F
18 also the homotopy fibre of /. Now apply (1.2) (a).

(2.3) PROPOSITION. Consider the following cocartesian square where
either f or g is a cofibration.

[
X — Y

g l | l g’
x I xuy=vy
' ¢
If f is acyclic, then f' is acyclic

Proof Since either f or g is a cofibration, we can change the other to
be a cofibration, if necessary, without changing the homotopy type of any
- of the four spaces. Hence each map is an injection, and for a local coefficient
system L on Y’, we have two long exact sequences in homology

— H,(X.f*¢'*L) — H, (Y,f'*L) —s H (Y, X; f'*L) —>

ig* . e lg* R l(g,g_)* |
£y o Ty
— H,(X',g'*L) —> H,(Y',L) —— Hy(Y',X’;L) —> ...
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By hypothesis (1.2) (b) the morphism f, is an isomorphism and thus
H, (Y, X;f'*L) = 0. By excision (g, g')« is an isomorphism and thus
H, (Y', X';L) = 0. Hence f', is an isomorphism and criterion (1.2) (b)
is satisfied for £/ to be an acyclic map which proves the proposition.

The previous proposition concerning acyclic maps in a cofibration will
be the basic tool for most of the results which follow in sections 2 and 3.
It was pointed out to us by Quillen.

(2.4) PROPOSITION. Consider the following diagram of CW-spaces.
f

X — Y
g l | l g’
I
X’ —_— Y,

If g and g’ are acyclic, and if m; (f) and =, (f') are isomorphisms
then the diagram is cocartesian up to homotopy equivalence.

Proof. First replace f and g by equivalent cofibrations and form
h:X' UxY— Y. The map g”: Y - X' U xY is an acyclic map by (2.3)
and g’ = hg". Thus h is acyclic by (2.1).

Since 7, (f) is an isomorphism, it follows that f” : X’ — X’ U xY has
the property that 7, (f") is an isomorphism by the van Kampen theorem
and £’ = hf". Thus =, () is an isomorphism. Now apply (1.5) to see that 2
is a homotopy equivalence. This proves the proposition.

(2.5) THEOREM. Let f: X — Y be an acyclic map between CW-spaces
with homotopy fibre g : F — X. Then f is the homotopy cofibre of g.

Proof. Let CF ‘be the cone over F. The homotopy cofibre C of g : F
— X is homotopy equivalent to CF U X and we have the cocartesian

square

F"—g—>X—f—»Y

| | 7
? /
' /
CF — C

Since fg =~ *, it follows that we have a map & : C — Y such that f ~ hv.
Since fis acyclic, the map F — CF is acyclic and, by (2.3) v is acyclic. One
deduces then, by (2.1) that % is acyclic. As n; (k) is onto (1.3), one has:

ker (ny (h)) = v (kermy (f)) = v(Imn, (9)) = 1
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So 7y (h) is injective and, by (1.3) and ' (1.5), & is a homotopy equiva-
lence. ‘ S ‘

(2.6) THEOREM. Let f: X —» Y be an acyclic map between CW-spaces
and let hy,h, : Y > Z be two maps. If hyf ~ h,f,  then it follows that
hl g hz.

Proof. By (2.5) we have cofibre sequence

Flx Ly, uF
where AF is the reduced suspension of the acyclic space F. Since AF is

simply connected and H, (4F) = 0, it is contractible, and the group
[4F, Z] in the Puppe sequence is zero. |

In general, the group [4F, Z] acts transitively on the fibres of the func-
tion [Y, Z] - [X, Z], so that in this case, [Y, Z] - [X, Z] is injective.
This proves the theorem.

§ 3. CLASSIFICATION OF ACYCLIC MAP FROM A GIVEN SPACE

Let X be a path connected space. To each acyclic map f: X — Y, we
assign the kernel of =, (f) : 7, (X) — ny (Y¥) which is a perfect normal
subgroup of 7, (X) by (1.3). The object of this section is to show that this
map from isomorphism classes of acyclic maps defined on X to perfect
normal subgroups of 7, (X) is a bijection.

(3.1) PROPOSITION. Let f:X - Y and f':X - Y' be two maps
between CW-spaces such that f is acyclic. There exists a map h:Y — Y’
with hf ~ ' if and only if ker n, (f) < kermy (f'), and such an h is
unique up to homotopy. In addition, if’ f' is acyclic, then h is c;cyclz'c, and h
is a homotopy equivalence if and only if ker n, (f) = ker n, (f).

Proof. If h exists, then =, (f') = m, (i) o7y (f) and we have
ker m; (f) < ker n; (f’). Conversely, we can suppose f is a cofibration
and form the cocartesian diagram

x Ly
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where g is an acyclic map by (2.3). Now calculate
my(9):my (YY) »my (Y'UxY) =7y ( Y/)*nl(X)”1 (Y)

by the vanKampen theorem. Since ker (n; (f )) < ker (n, (f ), it follows
that 7, (g) is an isomorphism, and by (1.5) the map g is a homotopy equi-
valence. Let g* : Y’ U yY — Y’ be a homotopy inverse of g. Then £
= g*g’ : Y - Y’ is the desired map with Af = f’. The map 4 is unique
by (2.6). | ,,

The map £ is acyclic by (2.1). Since 7, (%) is an isomorphism if and only
if kern, (f) = kerm, (f’), the last statement follows from (1.5), and
this proves the proposition.

(3.2) ‘COROLLARY. Let A be an acyclic CW-space. A map f ‘A Z
is null homotopic if and only if n, (f) is zero.

Proof. We apply (3.1) to the acyclic map 4 — %, and when =, (f) is
zero, f factors A — * — Z up to homotopy.

(3.3) PROPOSITION. Let X be a path connected space, and let N be a
perfect normal subgroup of m, (X). Then there exists an acyclic map [ :X
~ Y with ker ny (f) = N. If X has the homotopy type of a CW-complex,
then so does Y.

Proof. First, we do the case where N = n, (X) is perfect. Let T,
be a wedge of circles indexed by generators of N and u : T, - X a map
such that =, (u) is surjective. We form the cofibre v : X - X* of u, i.e.
attach a 2-cell for each circle. By the van Kampen theorem it follows that
ny (X*) = 0 and the homology exact sequence of the cofibration takes
the form

0->H,(X)>H,(X*) >0 for ¢

1\

3
and

0 - Hy (X) - Hy(X*) 5 H, (T) » H; (X) = 0.

Since H, (T}) is free abelian, it lifts back into H, (X*), and since 7, (X*)
— H, (X*) is an isomorphism by the Hurewicz theorem, there is a wedge
T, of two spheres and a map w : T, - X* such that 0H, (w) : H, (T,)
= H; (T}) is an isomorphism. Let X* — Y denote the cofibre of w : T,
— X*, and let f: X —» Y denote the composite X - X* — Y. The cofibra-
tion homology exact sequence takes the form

0-H,(X*>H,(Y)>0 for q=4,q=1




|
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and
H,(T))

/o]

0= Hy (X*) » Hy(Y) > Hy(Ty) » Hy (X*) » H, (Y) - 0

I 7m0

H, (X)

From this, a quick examination of the homology sequence reveals that

H, (f) :H, (X)—> H, (Y)isan isomorphism. Since Y is simply connected,
every local system on Y is trivial, and H, (f) is an isomorphism for all

coefficients. By (1.2) (c) the map £ is an acyclic map with the desn‘ed pro-

perties.
For a general perfect normal subgroup N cny (X), let g : X n— X
be the covering corresponding to N, that is, im (7, (g)) = N, and let

fo: X n = Y, be the acyclic map with ker (y ( f0)) = N = n, (X,) cons-

tructed in the previous paragraph. Change it up to homotopy into a cofibra- -

tion, and form the following eocartesian diagram.

S

9 | |
| s
X — XujiY,
By (2.3) the map f is acyclic. In order to calculate, we determine, using

the van Kampen theorem, the group =, (X U % ¥nYo) = ny (X) * 1y (XN)
ny (¥p). Since n; (Y,) = 1, it follows that 7, (X UxyYo) =

7y (X)] my (XN) = 7, (X)/N. The morphlsm 7y (f) is thus an epimor-

phism with kernel N. This proves the proposition.

(3.4 DEFINITION Two acyclic maps f:X->Y and f' :X>Y -

defined on X are equivalent provided there exists. a komotopy equivalence
h:Y— Y with hf ~f'.

Putting together proposmons (3.1) and (3.3), we, obtain the classifica-
tion theorem. :

(3.5) THEOREM. Let X be a path connected space with the homotopy
type of a CW-complex. The function which assigns to an acyclic map
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f:X— Y the subgroup ker (ny (f)) of =y (X) is a bijection from the
set of equivalence classes of acyclic maps on X {o the set of normal per-
fect subgroups of m; (X). :

~ Proof. The function is injective by (3.1) and surjective by (3.3).

In view of this theorem we see that the theory of acyclic maps is similar
to the theory of covering spaces, in that, they are classified by certain
subgroups of the fundamental group. By way of comparison, for covering
maps f: Y — X over X, the group im 7, (f) is given, ‘and 7, (f) is an
isomorphism for g = 2. The homology of Y is related to that of X by
a spectral sequence. For acyclic maps f : X — Y from X, the group ker 7, (f)
classifies the objects. It is perfect and normal, and f, : Hy (X, f7L)
- H* (Y, L) is an isomorphism for any local system L on Y. The higher
homotopy groups of X and Y are not easily related in general (but see § 5).

(3.6) Notations. Let 2 be the category whose objects are pairs (X, N)
where X is a pointed CW-space and N is a perfect normal subgroup of
7, (X) and whose morphisms f : (X, N) — (X', N') are homotopy classes
of maps f: X - X’ with n, (f) (N) = N'. Let (CW) be the category of
pointed CW-spaces and homotopy classes of maps. We have two natural
functors « : (CW) —» 2 and B :2 — (CW) with Ba the identity where
B(X,N) = X and a«(X) = (X, Ny) for N, the maximal normal perfect
subgroup of 7; (X).

(3.7) THEOREM. ' For (X, N) in P choose f: X —» X% an acyclic map
with ker (m, (f)) = N. Then there is a functor ¢ :2 — (CW) and a
morphism of functors f:B — o such that o (X, N) = X5 and f(X, N)
= £ o |

Proof. This immediate from the universal property (3.1).

(3.8) Remark. The space X y is unique up to homotopy equivalence.
The acyclic map X — X 3 we had to choose is defined up to the composition
with a homotopy equivalence of X 5. However, we shall give in Section 4
a stronger functorial way to construct acyclic maps without any choice,
for instance the functorial plus construction f : X - X * where X* = oo (X)




— 64 —

§ 4. THE HOMOTOPY FIBRE OF THE PLUS CONSTRUCTION

(4.1) THEOREM. Let u:AX — X be the fibre of X - X* for a
CW-space X. Then for any map f: W — X from an acyclic CW-space W
into X, thereisamap f': W — AX with uf' ~ f and f is unique up to
homotopy.

Proof. We have the following diagram where the lower row is a fibre
sequence.

" lf
e

+\ - 0 7+
QX)) —> AX — X — X

Since ; (W) is perfect and 7y (X ™) contains no nonzero perfect subgroups,
my (0 f) is zero and by (3.2) the map 6 f'is null homotopic. Then there is a
map f': W — AX with uf’ ~ f. Two factorizations f' of f differ by the
action of a map W — Q (X). Since again n; (W) is perfect and 7, (Q (X))
abelian, 7, of this map is zero so by (3.2) the map is null homotopic. Hence
S/’ 1s unique, and this proves the theorem.

(4.2) Remark. Dror introduced the map 4X — X having the universal
property given in the previous theorem and proved for each CW-space X
the map AX — X existed. He used a Posnikov tower construction starting
with the covering of X corresponding to the maximal perfect normal sub-
group of m; (X). By (2.5) we see that we can recover X — X ¥ as the cofibre
of AX - X.

All the properties of AX listed in [D1, Theorem 2.1] can be shown using
the fact that 4X is the fibre of X — X *. For instance we will in (5.4) give }
- a sharper version of [D1, Theorem 2.1 @1v)]. -

4.3) Remark. The Posnikov tower construction for AX — X, when

done in the category of simplicial sets, is functorial for maps of simplicial

sets. For CW-spaces we obtain a functorial AX — X for maps using the
geometric realization of simplicial sets. Since we can choose X — X} to

be the cofibre of A4 (X’N) — X, we obtain a sharper version of the func-
toriality in (3.7) and (3.8), namely on the level of spaces and maps.
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(4.4) Remark. The group N = Ty (AA; v) is a central extension of N
(see the appendix) and, as AX v 1s acyclic, satisfies H; (N) = H, (N) = 0.
Therefore N is the universal central extension of N (see [K2]), namely one

has the exact sequence 0 —» H, (N) — ];7 — N — 1. Therefore, if f:X
— X’ is a map such that n, (f) sends the perfect normal subgroup N of
n, (X) isomorphically onto a normal subgroup N’ of m; (X'), then the

induced map Af : AX N = AX v induces an isomorphism on the fundamental
groups.

§5. k-SIMPLE ACYCLIC MAPS

In this section we study acyclic maps having simplicity properties. The
first proposition generalizes some results of Dror [D1, Lemma 3.4].

(5.1) PropOSITION. Let f:X—> Y be a map of path connected
spaces with 7w, (f) an isomorphism, and let N be a perfect normal
subgroup of my (X) = wn. If f induces an isomorphism H, (X, Z [n/N])
% H, (Y, Z [n/N]) and an isomorphism m;(X) > n,(Y) for i <k — 1,
then | :

(M) 7. (f) : 1 (X) » . (Y) is an epimorphism when N acts trivially
on 1w, (Y), and

2) 7. (f) : 1 (X) = 7, (Y) is an isomorphism when N acts trivially
on m(X) and 7, (Y).

Proof. Let F— X v be the homotopy fibre of the covering map ; : A; N

- );N. By' hypothesis it follows easily that fN induces an isomorphism on
integral homology and on 7; (X) — =, (Y) for i £ k — 1. From the Serre

spectral sequence we have Ho (Yy, Hy_; (F)) = H, (N, Hy_{ (F)) = 0.

Since Hy_; (F) = m,_; (F) is a quotient of =, (Y) on which the perfect

group N acts trivially, it follows that =, _; (F) = 0, which proves (1). '
Under the hypothesis of (2) we have x;(F) = 0 for i < k and

H, (Yy, Hy (F)) = H, (N, m, (F)) = 0. Since N acts trivially on =, (X)
the induced morphlsm 7, (F) = 7, (X) must be trivial, which proves the
proposition.

The following lemma, proved in [D2, Lemma 2. 6], follows easily from
the homology exact sequence.
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Hy(G,M") > Hy(G,M') - Ho (G, M) - Hy (G, M") > 0

(5.2) LEMMA. Let 0 > M' > M —» M" - 0 be a_short exact sequence
of Z [Gl-modules where G is a perfect group. Then M’ cmd M" are trivial
G-modules if and only if M is a trivial G-module. .

(5.3) DEFINITION. A space X is k-simple provided m, (X) acts trivially
on m (X). A map f X > Y is k-simple provided ker ny (f) < my (X)

acts trivially on m, (X ).
(5.4) PROPOSITION. Let f:X— Y be a map with homotopy Cﬁbre A
where 71 (A) is perfect. Then f is k-simple if and only if A is k-simple.
Proof. In the homotopy exact sequence of any fibration
T+ 1 (Y) = m (4) > ”k(X) - (Y),

see the appendix, m; (4) acts trivially on im (M4 1(Y) = 7, (4) =
If fis k-simple, then im (7, (4)) = ker (n, (f )) acts trivially on 7, (X ).
Hence 7, (A4) acts trivially on M’ < 7, (4) and on the quotient 7, (4)/ M.
By (5.2), it acts trivially on 7, (4).

Conversely, ker (, (f)) acts trivially on ker (m (f )) € 7 (X) and
trivially on 7, (Y) > im (m, (f ))- By (5.2), ker (ny (f )) acts trivially on
ny (X). This proves the propos1t1on

(5.5) Notations. For a path connected space X and a perfect normal
subgroup N of m; (X), we consider the following conditions:

(Py). The group N acts trivially on 7; (X) for i < k.
(H,). The grdup N acts trivially on H; ()~( ) for i £ k.
- (5.6) PROPOSITION.  For all natural numbers k we have that P, implies
H, and Hy implies P,_y. In particular, H, and P, are equivalent.

Proof Consider the following commutative diagram where the rows
and columns are fibrations.

T~—>A)~(N——>A(BN)

o l

)X;——f X — BN

[
Xy

—> _BN?

F —>s




By (5.4) condition P, implies that =, (A)} y) acts trivially on n; (4Xy)
for i < k. Since AX’N and A (BN) are both’a’cyclic‘and T, (AXy) S

s (A (BN)) is an isomorphism (by (4.4)), we deduce using (5.1) that 7; (4 Xy)
- 7; (4 (BN)) is an isomorphism for i < k. Thus n; (T) = Ofori < k — 1
and 7, (T) is a trivial module =, (4 (BN)) since it is a quotient of
Tevq (4 (BN)) On the other hand, we have H, (n, (4 (BN)), m, (T)) = 0

since 7, (T) = H, (T) and thus H, (AXN) - H, (4 (BN)) is an isomor-

phism. Therefore, n, (T) = 0 and H, (5( ) = H; (F) is an isomorphism for
i £ k. Hence P, implies H, since N acts trivially on H, (F).

. Next, assume H, holds. Then H, (:Y') — H; (F) is an isomorphism for
i = k by the comparision theorem for spectral sequences of fibrations
with trivial actions. Since 7, (F) is abelian, n, (F) = 0 and n; (T) = 0 for

i<k — 1. Hence =, (AXN) acts trivially on (AXN) for i<k — 1.
Using (5.4), we deduce P,_, and the proposition.

(5.7) THEOREM. Let f: X — Y be an acyclic map between CW-spaces
which is k-simple for all k 2 2 with N = ker n, (f). Then the following
is a fiber sequence

X - Y5 [Br, 1%

where o is induced by o :X - Bmn, (X) as in 3.1 and ny () is the
identity.

Proof. As in the previous proposition, we have a diagram of fibrations

— AXy ——> A(BN)

SRR
o
N

Y - [3”1 X )]4&
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We prove X — F is a homotopy equivalence with the same argument used
in (5.6) to show P, implies H,. Since F is also the fibre of Xy — [Br; (X IES
we have proved the theorem.

(5.8) Remark. Using (5.1), we see that for an acyclic map f: X - Y
which is k-simple for all £ = 2, the homotopy groups 7, (Y) can be com-
puted in terms of n, (X) and =, (Br; (X)§) = 7, (BN)™ for i = 2. Some
computations of n, (BN ") for a certain perfect group N can be found for
instance in [H, Chapter 7].

§ 6. -ACYCLIC MAPS INTO A GIVEN SPACE

In this section we study acyclic maps f: X — Y into a fixed space Y.
Two such map f: X — Y and f’ : X’ — Y are called equivalent provided
there is a homotopy equivalence 4 : X —» X’ with f ~ f'h. Let AC(Y)
denote the class of equivalence classes of acyclic f: X - Y over Y where X
and Y are CW-spaces. |

(6.1) DEFINITION. An extension data over a space Y is a triple (P, i, D)
where

(a) @ isanextension 1 > N—> G—mny(Y)—>1 with N perfect,

(b) i:BG — BGY is an acyclic map with ker (my (D)) = N (whose equi-
valence class is well defined by-(3.5)), and

() ¢ :Y - BGy is a2-connected map.

Two triples of extension data (®, i, ¢) and (&', i’, ¢') are called equi- |
valent provided there exists an isomorphism g : G — G’ making the follow-
ing diagrams commutative (up to homotopy for the second one).

Bg

BG 2. BG
¢ 2 ¢ i’l l i
B
\\ // BG: 2% B(GH:
. X oA
m (Y) E\ yt

Y
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where N’ = g (N) and Bg™ is the unique homotopy equivalence deter-
mined by g with (3.1).
We denote by ED (Y) the class of equivalence classes of extension data.

(6.2) DERINITION. The datamap p is the function p : AC(Y) - ED (Y)
which assigns to an acyclic map f:X — Y the class p (f) = (D1, o)
of extension data defined as follows :

(a) @ is the extension 1> kern, (f) > n (X) > 7 (YY)~ L

(b) (c) With the well defined j:X — BG for G = m; (X) we form the
cocartesian diagram -

.

J

X —» BG
fl l i
)
Y — YuBG
X

Since £ is acyclic, i is acyclic, and since 7, (/) is an isomorphism, ker (7, (D)
= N. Thus Y U xBG is BGy up to equivalence. '

Now we have to check that the map ¢ : ¥ - YU yxBG = BGy is
2-connected. Since 7, (j ) is an isomorphism, 7, (¢) is also an isomorphism.
The fact that 7, (¢) is surjective comes from the diagram.

() < m(Y) > Hy(Y) < Hy(Xy)

% @) | |m® |/

¥
n,(BGy) <— mn,(BN*) —=» H,(N)
The surjectivity on the right is a classical result of Hopf which follows easily

from the Serre spectral sequence of the fibration X- X ~ = BN.

Now using (2.5) a simple argument, left to the reader, shows that
p:AC(Y) - ED (Y) is well defined.

(6.3) THEOREM. Let Y be a CW-space. Themap p : AC(Y) - ED (Y)
surjective and its restriction to the subclass ACg(Y) of AC(Y) of f: X
— Y which are k-simple for all k = 2 is a bijection.

Proof. To show p is surjective, consider extension data (D, i, ) and
form the cartesian square
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X = Yx ;BG —» BG

fl‘ o lz

Yy 2, BGt=r
Now f'is acyclic by (2.2), and since its fiber is the same as i, we deduce by
(5.2) that £ is k-simple for all k > 2.

Next, let p (f) = (Do, iy, ¢,) and we show this extension data is
equlvalent to (&, i, $). Using the homotopy exact sequences for X — ¥
-and BG - BGy and the fact that ¢ is 2-connected, we deduce from the five
lemma that 7, () : 7; (X) » G is an isomorphism. The followmg diagram
shows that (&,, i,, gbo) 1s equivalent to (@, i, ¢) and p is surjective. '

L

X » BG
o

)-<

= BG}

‘Knl(oc)“k
| v

YU xBm, (X)

Now, if f: X > Y is an acyclic map which is k-simple for all k > 2
and with p (f) = (9, i, ®), then we form the followmg commutative
diagram.

X - ¥Yx.B6 —» BG
AN i @=mw)
Y . BG:t -

As we have seen in the proof the surjectivity of p, the map £, is acyclic and
k-simple for k = 2. The map d induces an isomorphism on the fundamental
groups and on homology with Z n; (Y) twisted coefficients. By (5.3),
the map d is a homotopy equivalence. This proves that the acyclic map fis
equivalent to the mduced map fo- Thus p restricted to ACj (U) — ED (Y)
is a bijection.
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(6.4) Remark. This theorem leaves open the question of the fibres

of the function.
p: AC(Y) > ED(Y).

In the next theorem we factor an acyclic map by ones having simplicity
properties. —

(6.5) Remark. In theorem (6.3), if one fixes an extension ¢ : 1 - N
— G > n, (Y) — 1, then the same proof permits us to classify acyclic maps
f:X - Y which are k-simple for k > 2 together with an identification
d:n, (X) — G such that &d = =, (f). The objects of ED (Y) have to
be replaced by couples (i, ¢) where i : BG — BGy is as above and ¢ : Y
— BGy is 2-connected with the following diagram commuting up to

homotopy. B® ‘
| / Vjﬁ /
| i
¢
Y » BGy

This is what is done implicitely in [H, Sections 2 and 4]. Observe that
we are dealing here with classes which are sets.

(6.6) LeMMA. Let X be a CW-space and N a perfect normal subgroup
of ny (X). Let X — P,X denote the nth stage of the Postnikov decomposi-
tion of X. Then for all n Z 1 we have that

(1) =; (XR) - n; (P, X)N) isanisomorphism for j < n and an epimorphism
for j=n+1, and

(2) m;(AXy) — 7; (4 (P,X, ) is an isomorphism for j<n and an epi—r
morphism for j = n + 1.

Proof. Consider the following homotopy commutative diagram of
fibre sequences N 5
T — AXy —> A(PX)

L l

F —_—> ‘iN S PniN

G —> (X)" —> (P.Xy)*.




i

Clearly 7; (F) = 0 for i < n + 1. The spaces X ~ and P,,E( v have the same

(n+1)-skeleton and the same can be assumed for X  and (P,X,)". Hence
n;(G) = 0 for i < n + 1. Now (1) follows because G is the ﬁbre of Xy
- (P, X)".
By comparing Serre spectral sequences, we obtain the surjectivity of -

H, (Ns H,q (F)) — H, (N, H, 4 (G)) = Hn+1 (G) = m,41(G).
Thus 7; (T) = 0 for _j < 7 and (2) follows.. |

(6 7) THEOREM. Let f:X - Y be a map between CW-spaces. Then
there is a factorization

such that B; is i-connected and «; is an acyclic map which is k-simple for - h
k > i v '
Such a decomposition is unique up to a homotopy equivalence.
Proof. The ith stage X; is defined by the cartesian diagram
Y x ;P,(X) —> PX

Y — @X)y=T
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where N = ker (n; (X) — m; (Y)). By (6.6) the map p; is i-connected since

the fiber of the two vertical arrows is 4 (P,X)y. Now by (5.4) we see that
«; is simple for k > i.

For two decomposmons (X?) and (X7 of f:X—Y satlsfymg the above
conditions, we have P,X; = P, X; and both X; and X; map into X,
constructed above, such that the resulting diagrams are homotopy commu-
tative. The connectivity of the §; and (5.1) shows that these maps are all
homotopy equivalences. This proves the theorem.

(6.8) Remarks. This theorem (6 7) coincides with the Dror results for
Y a point [D1, Theorem 1.3] and ¥ = S" [D2]. An interesting problem is
to describe the ith stage X; in terms of invariants of X;_; as in [D1] and
[D2]. (See the footnote in the introduction.) )

APPENDIX — SIMPLICITY PROPERTIES OF FIBERS

; ' S
In the proof of (5.4) we used the fact that for a fibration F - E — B
the action of 7y (F) on Im (0 : w41 (B) — m, (F)) is trivial. This assertion
does not seem to be in the literature so we include a proof here.

We extend the mapping sequence of the fibration fto QB - F - E LR B
and study F as the total space of a principal fibration with fibre the H-space
QB. If G is an H-space, then n; (G) acts trivally on w, (G) because the

covering transformations G — G on the universal covering G of G are
homotopic to the identity. This is proved by lifting a loop to a path in G

and using the H-space structure on G to deform the identity along this path
to the covering transformation defined by the homotopy class of the loop.
Recall that a principal fibration is induced from G — E; — B up to fibre
homotopy equivalence.

(A.1) PROPOSITION. Let G — X 5Y bea principal fibration with
fibre G acting on X. Then we have :
(@) im (n, (G) » =, (X )) acts trivially on n, (X), and
(b) my (X) acts trivially on im (n, (G) — =, (X)).

Proof. For (a) we have the following commutative diagram induced

by a covering transformation T : G — G.




G > GxX > X
T/" - Tx1 /4 , T
G >-éx)~(_ : > X J
N NV o
G > GxX D¢

The covering transformation T defines 7", and since 7T is homotoplc to the
identity so is 7”. This proves (a). |
For (b) we use the following commutative diagram where T is any

covering transformation of X.

G x X >

\le&'G /I
N, N

T Gx X

Now the inclusion 7 : G —» X is the composite of the first horizontal row,

and T'i and i are homotopic by i, (g) = g - « (t) where g € G and « is a
lifting of the loop « corresponding to the covering transformation 7.
This proves the proposition.

‘For a general fibration f: E — B with fibre F the mappmg sequence
QB - F - E — B allows us to deduce the next proposmon from the |

previous one.
| (A 2) PROPOSITION. Let f:E — B be a ﬁbratzon with ﬁbre F - E.
Then we have :

(a) im (n2 (B) - my (F)) acts trivially on m, (F), and
(b) n, (F) acts trivially on im (0:7m11 (B) > m; (F)).
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