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A titre d'exemple, nous analyserons l'énoncé (4.1) dans deux cas parti-
culiers.

a) Supposons d'abord

c'est-à-dire Yx Xl9 Y2 - X± + X2. Si chacun des couples (Xl9 X2),

(Yu Y2) est formé de variables aléatoires indépendantes, le Théorème (4.1)

permet d'affirmer que la variable aléatoire X1 est normale (en revanche,

on ne peut rien affirmer sur X2). On peut d'ailleurs préciser que la variable
aléatoire X± est dégénérée. Il suffit pour cela de remarquer que, dans le cas

présent, l'équation (4.6) se réduit à. la forme (4.7) avec 0 (u) 1 (cf. (3.3)).

b) Supposons ensuite

c'est-à-dire Y± Xx cos co — X2 sin co, Y2 X1 sin co + X2 cos co. Si

chacun des couples (Xl9 X2)9 (Tl5 Y2) est formé de variables aléatoires
indépendantes, et si co n 'est pas un multiple entier de % / 2, le Théorème (4.1)
permet d'affirmer que chacune des variables aléatoires Xl9 X2 est normale
(en revanche, si co est un multiple entier de n / 2, on ne peut rien affirmer,
ni sur X1 ni sur X2). On reconnaîtra ici un résultat ayant des analogies avec
le Théorème (2.1).

Remarquons enfin que l'énoncé du théorème de Bernstein-Darmois
tel qu'il figure dans [3] (pag. 77 et pag. 499) est incorrect. En effet il entraîne
notamment que, dans les hypothèses du cas particulier a) ci-dessus, la
variable aléatoire X2 est normale, ce qui est manifestement faux (il suffit,
pour s'en convaincre, de prendre X± constante et X2 non normale).

Voici l'énoncé du théorème de Skitovitch-Darmois mentionné au
paragraphe précédent:

(5.1) Théorème. Soit X un vecteur aléatoire, à valeurs dans R", dont
les composantes Xl9..., Xn sont indépendantes. Considérons les deux
variables aléatoires Yl9 Y2 définies par les relations

A
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Y± axX± + + anXn

[ Y2 biX1 + + bnXn

où les coefficients ah bt sont des scalaires donnés. Si les variables aléatoires
Yu Y2 sont elles mêmes indépendantes, alors, pour chaque indice i tel
que affii #= 0, la loi de Xt est normale (éventuellement dégénérée).

Ce théorème est bien plus profond que celui de Bernstein-Darmois
(auquel il se réduit pour n 2). Il permet en effet de démontrer directement
le théorème de Cramér-Lévy, ainsi que certains résultats de a-factorisation. *)

Il n'est donc pas étonnant que toutes les démonstrations connues du
théorème de Skitovitch-Darmois fassent appel à des résultats profonds de
la théorie des fonctions caractéristiques analytiques (théorème de
Marcinkiewicz, théorèmes de a-factorisation). Voici en revanche une
généralisation du théorème de Bernstein-Darmois qu'on peut obtenir par nos
méthodes d'équations fonctionnelles.

(5.1) Théorème. Soit X un vecteur aléatoire à valeurs dans RM (n^. 2),
dont les composantes Xl5 Xn sont des variables aléatoires indépendantes.
Soit A — (aij) une matrice réelle {n, n) non singulière, et supposons que les

composantes du vecteur aléatoire Y AX sont également indépendantes.
Alors, pour chaque indice i tel que la i-ème colonne de A possède

au moins deux éléments non nuls, la loi de X{ est normale (éventuellement
dégénérée

Pour rendre plus claire la démonstration, nous commencerons par
démontrer un lemme préliminaire:

(5.2) Lemme. Soit X un vecteur aléatoire à valeurs dans Rn (n ^ 2).
dont les composantes Xu...,Xn (par rapport à la base canonique (e1?..., ,en)
de Rn) sont des variables aléatoires indépendantes2). Alors la fonction
caractéristique 0 de X vérifie la relation

<P (s) $ (s + uet + ve2) $ (s + ue^ $ (s + ve2)

pour tout vecteur s de Rn et pour tout couple (u, v) de scalaires.

b Voici,par exemple, comment on peut en déduire le théorème de Cramér-Lévy
(cf. [4], pag. 193). Soit X, p. un couple de lois de probabilité sur R, dont le produit de convolution

est une loi normale; prenons un système de quatre variables aléatoires indépendantes

X, X', Y, Y' tel que les lois de X et de X' coïncident avec X et celles de Y et
de Y ' avec p.. Les deux variables aléatoires (X + Y + (X' + Y 0, (X + Y)- (X/ + Y/
sont alors normales, non correlées, donc indépendantes. En appliquant le théorème de
Skitovitch-Darmois pour n 4, on en déduit que chacune des lois X, p. est normale.

2) En fait, il suffirait de supposer que le triplet formé de Xlf X2 et du système
(I3,..., Xn) est indépendant.
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Démonstration du lemme. Désignons par (p\ la fonction caractéristique
de Xj et par stla z-ème composante du vecteur s (par rapport à la base

canonique de R"). On a alors
n

® (s) (pi(so<p2 (s2) n <?< (5i) '
i 3

n

^(s+ue! +ve2) (Pi (st («2 +v) n Vi0;)
i 3

n

$ (s) + uej) <Pi (sx + m) <p2 (s2) n Vi 0«) »

i=3
n

0 (s +ize2) ç>! (st) <p2 (s2 +v) Il ?«(*).
i 3

d'où la conclusion.

Démonstration du théorème. Supposons que la première colonne
de A possède deux éléments non nuls, et montrons que la loi de X± est

normale. On pourra supposer, par exemple, a1± ^ 0 et ö2i ^ 0. Quitte
à multiplier chacune des deux premières lignes de A par un scalaire convenable,

on pourra même supposer

(5.3) fln a211.

Désignons par L l'application linéaire de Rn dans lui-même dont la matrice,

par rapport à la base canonique de RM, est la transposée de A. On a donc,

pour tout /,

(5.4) Let at,

où a£ désigne le vecteur (an,... ain).

Désignons en outre par (pt la fonction caractéristique de Xt et par 0
celle de X :

(5.5) <P(ft.,-, t„) Vi(h)-VniQ-
Le vecteur aléatoire Y AX admet alors comme fonction caractéristique
la fonction composée i// ^oL. En lui appliquant le lemme précédent,
on trouve, pour tout scalaire u et pour tout vecteur s de R",

xj/ (s) x// (s + ue1 - ue2) i/s (s + ue±) \b (s - we2)

c'est-à-dire

0(Ls)0(Ls+ual — wa2) ^(Ls+ua1)^(Ls-wa2).

Etant donné le scalaire t, appliquons cette relation au vecteur s déterminé
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par Ls te 1 (un tel vecteur existe puisque la matrice de L est régulière).
On obtient

<&(te1)<P(te1 -\-u{2i1 — a2)) ^>(te1 + ual)<P(te1 — wa2),

c'est-à-dire, grâce à (5.5) et (5.3),

n

(5.6) (pi(t)cpi(t) n <Pi(u(au-a2i))
i — 2

n n

q>i(t+u) n <Pi(uau)<Pi{t-u) n
i 2 i 2

Or, si I u | est assez petit, on a (pt(u (ali — a2i)) # 0 pour tout i, de sorte

que la relation précédente peut s'écrire sous la forme

(5.7) (cp1 (0)2 q>1(t+ü)q>1(t-u9 (u)

Il en résulte, grâce à (3.1), que <p± est la fonction caractéristique d'une loi
normale.

6. Retour sur les équations fonctionnelles
DES PARAGRAPHES PRÉCÉDENTS

Dans l'étude des équations fonctionnelles des paragraphes précédents,

nous nous étions systématiquement bornés à rechercher les solutions dans

l'ensemble des fonctions caractéristiques. Nous nous proposons maintenant
d'étudier ces mêmes équations (ou des équations analogues) dans l'ensemble
de toutes les fonctions complexes continues définies dans R.

Nous commencerons par l'équation fonctionnelle

(6.1) (/(*) l/(») I)2 =/(*+«)/(*"«).'

qui se réduit manifestement à l'équation (3.2) dans le cas où/est une fonction

caractéristique.

(6.2) Théorème. Soit f une application continue de R dans C, telle

que f(0)=1.
Alors les deux propriétés suivantes sont équivalentes :

(a) f vérifie la relation (6.1) pour tout couple t, u de nombres réels ;
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