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(a) p est normale ;

(b) il existe un voisinage V de Il’origine dans R et une applzcatlon 0
de V dans C telle que I'on ait

(3.2) (@) = ¢ (t+u) o (t—u) 6 (u)

pour tout couple t,u d’éléments de V.

Démonstration. 11 suffit de démontrer I'implication (b) = (a). Supposons

donc la propriété (b) vérifiée. Quitte a remplacer ¢ par @@, on peut supposer

¢ réelle. L’équation (3.2) fournit alors, pour ¢ = 0, 1 = (¢ ())? 0 (), de
sorte qu’elle peut s’écrire sous la forme équivalente

(@OoeW) =ol+uwe—u).

En particulier, pour ¢ = u = s/2, on trouve (¢ (5/2))4 = @ (s) La
conclusion résulte alors du Théoréme (1.2) pour ¢ = 4,

(3.3) Remarque. Le cas d’'une loi u dégénérée correspond a celui ol
I’équation (3.2) est vérifiée avec une fonction 6 identiquement égale a 1.

4. LE THEOREME DE BERNSTEIN-DARMOIS

Soit (X, X,) un couple de variables aléatoires réelles, de méme loi.
Si le couple (X;+ X,, X;—X,) est formé de variables aléatoires indé-
pendantes, alors la loi commune de X; et de X, est normale: c’est le
théoréme de Bernstein-Darmois sous sa forme primitive. Il fut d’abord
démontré par S. Bernstein [1] avec I’hypothése que la loi commune de X,

et de X, posséde des moments finis jusqu’a I'ordre 4. Plus tard G. Darmois

[2] réussit & généraliser ce résultat, tout en s’affranchissant.de ’hypothése

concernant Pexistence des moments. Il employa a cet effet une technique |

de différences finies, qui lui permit également de démontrer une généralisa-

tion ultérieure, bien plus profonde, connue sous le nom de théoréme de

Skitovitch- Darmo1s (cf. [6]).

Nous présentons ci-dessous le théoréme de Bernstein-Darmois, que nous\

démontrons a l'aide de 1’équation fonctionnelle du paragraphe 3.

(4.1) THEOREME. Soit X un vecteur aléatoire a valeurs dans R?, dont
les composantes X,, X, sont des variables aléatoires indépendantes. Soit
A = (a;;) une matrice réelle (2,2), et supposons que les composantes du
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vecteur aléatoire Y = AX, c’est-a-dire les deux variables aléatoires réelles
Y,, Y, définies par
Yy = ap Xy + aX,
Y, = ay Xy + 032X,
soient elles aussi indépendantes. Alors, pour chaque indice i tel que la i-éme

colonne de A soit formée d’éléments non nuls, la loi de X; est normale
(éventuellement dégénérée). '

Pour rendre plus claire la demonstratlon ‘nous commencerons par
démontrer un lemme préliminaire:

(4.2) LEMME. Soit X un vecteur aléatoire & valeurs dans R?, de com-
posantes X, X,, et soit ® sa fonction caracz‘erzstzque Les deux propriétés
suivantes sont alors équivalentes :

(a) (X, X,) est un couple de variables aléatoires indépendantes ;
15 :

(b) pour tout systéme de scalaires sy, S,, U, v, on a
D (51, 8,) D (s +u, 5, +0) = D (s +u, 5) P (51,52 +v) .

D.émonstration' du lemme.
Il suffit de démontrer (b) = (a). Si I’'on désigne par ¢; la fonction
caractéristique de X;, I’hypothése (b) fournit (pour s; = s, = 0)

®(u,v) = @(u,000(0,%) = ¢, (W (1),

C’est-a-dire I'indépendance du couple (X, X,).

Démonstration du théoréme. Supposons, -pour fixer les idées, que la
premiére colonne de A soit formée d’éléments non nuls, et montrons que
la loi de X, est normale. Quitte 2 multiplier chacune des lignes de 4 par
un scalaire convenable, on pourra supposer

(4.3) v ay; = dy =1.

1) Supposons d’abord que la matrice 4 soit singﬁliére. En vertu de
notre hypothése on a alors Y; = Y,. Par conséquent Y est indépendante
d’elle méme, c’est-a-dire p.s. €gale a une constante:

Y =X, +a,X, =c¢ ps.
il en résulte
Xy =c¢—apX, ps.,
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de sorte que X; est également indépendante d’elle méme, c’est-a-dire p.s.
€gale a une constante.

2) Supposons maintenant que la matrice 4 ne soit pas singuliére, et
désignons par ¢; la fonction caractéristique de X; et par & celle de X:

4.4) = D(t, 1) = @1 (1) @, (tz) .

Désignons en outre par  la fonction caractéristique du vecteur aléatoire
Y = AX, c’est-a-dire la fonctlon définie par

(4.5) Y (51, 8) = P(sy +s,, S1a1z +5,a5,) .

En appliquant le lemme précédent au couple de variables aléatoires indé- /
pendantes (Y, Y,), on trouve, pour tout systéme de scalaires s, s,, u

v (sq, S2) ¥ (sy +u, S —u) = Y (s; +u, So) Y (31; Sy —1U) .
Grace a (4.5), cette relation s’écrit, en fonction de D,
D (51 + 52, S1a15 +52055) P (51 + Sy, 81015 + 5,05, +Ua , —Uay,)
= D (51 +5,+U,S1a15 + 52055 +Ua;,) P (5 + 5, —u, $;a1, + 5205, —ua,,) .

Etant donné le scalaire ¢, choisissons maintenant s,, s, de facon a satisfaire

aux conditions
S1 + S, = t
S1015 + Spa5, = 0

(ce qui est possible, car la matrice 4 n’est pas singuliére). La relation pré-
cédente devient alors

@(t,0)0 (ta u(ag, _022)) =& (t+u,ua;,)d(t—u, ; uazz) 5
Cest-a-dire, grice A (4.4), |
(4.6) @1 () 92 (0) @y (2) @3 (u (ag2 —ay,))
= @y (t+u) @ (uay,) o1 (t—u) @, (—uay,).

Or, si Iul est assez petit, on a @, (u (aj,—ay,)) # 0, de sorte que la
relation precedente peut s’écrire sous la forme |

(4.7) (o1 (t))2 = @1 (t+u) @y (l‘—u) H(u)

Il en résulte, grace a (3.1), que gol est la fonctlon caractéristique d’une loi
normale.
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A titre d’exemple, nous analyserons ’énoncé (4.1) dans deux cas parti-

culiers.
1 0
A= R
(1 1)

Cest-a-dire Y, = X,, Y, = X, + X,. Si chacun des couples (X, X},),
(Y4, Y,) est formé de variables aléatoires indépendantes, le Théoréme (4.1)
permet d’affirmer que la variable aléatoire X; est normale (en revanche,
on ne peut rien affirmer sur X,). On peut d’ailleurs préciser que la variable
aléatoire X, est dégénérée. Il suffit pour cela de remarquer que, dans le cas |
présent, I’équation (4.6) se réduit a la forme (4.7) avec 0 () = 1 (cf. (3.3)). |

a) Supposons d’abord

S S S So

b) Supposons ensuite
cos w —sin
- s )
sin @ CoS
c’est-a-dire Y, = X;cosw — X, sinw, Y, = X, sinw + X, cos w. Si
chacun des couples (X, X,), (Y4, Y,) est formé de variables aléatoires 5
indépendantes, et si @ n’est pas un multiple entier de = | 2, le Théoréme (4.1)
permet d’affirmer que chacune des variables aléatoires X;, X, est normale
(en revanche, si @ est un multiple entier de = / 2, on ne peut rien affirmer,
ni sur X 4 ni sur X,). On reconnaitra ici un résultat ayant des analogies avec
le Théoréme (2.1).
Remarquons enfin que I’énoncé du théoréme de Bernstein-Darmois
tel qu’il figure dans [3] (pag. 77 et pag. 499) est incorrect. En effet il entraine
notamment que, dans les hypothéses du cas particulier a) ci-dessus, la

variable aléatoire X, est normale, ce qui est manifestement faux (il suffit,
pour s’en convaincre, de prendre X, constante et X, non normale).

5. LE THEOREME DE SKITOVITCH-DARMOIS

Voici I'énoncé du théoréme de Skitovitch-Darmois mentionné au para-
graphe précédent:

(5.1) TuEOREME. Soit X un vecteur aléatoire, a valeurs dans R", dont

les composantes X4, ..., X, sont indépendantes. Considérons les deux
variables aléatoires Y., Y, définies par les relations
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