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2. UNE GENERALISATION DE L’EQUATION FONCTIONNELLE DU § 1.

Si I'on regarde attentivement la démonstration du Théoréme (1.5) de
Maxwell, on s’apercoit que, en ce qui concerne I'implication (b) = (a), on
n’a exploité I’hypothése d’invariance par rotation que pour des rotations
bien particuliéres, a savoir: |

(a) des rotations dont la matrice admet comme lignes des vecteurs de
la base canonique, éventuellement multipliés par —1;

(b) des rotations dont la matrice admet comme premiére ligne le
vecteur (1/\/11, ves 1/ﬁ).

Les rotations du type (a) nous servaient en effet a démontrer préalablement
I’égalité des lois des variables aléatoires X, ..., X,. Une seule rotation du
type (b) suffisait ensuite & démontrer la nature gaussienne de la loi com-
mune. .

Dans le cas du plan, en se plagant d’emblée dans I’hypothése de I’égalité
des lois, on peut méme énoncer le résultat suivant, faisant intervenir une
seule rotation.

AY

(2.1) TaEOREME. Soit (X, Y) un vecteur aléatoire, & valeurs dans R?,
dont les composantes sont indépendantes et de méme loi u. Désignons par
(X', Y') le vecteur aléatoire

(X=D)/2, X+1)2)

(transformé de (X, Y) par une rotation de m |4 autour de I’origine). Si
l'une des composantes de (X', Y') suit la loi p, alors p est normale et
centrée. 1) | |

Démonstration. Supposons d’abord que la composante Y’ = (X+ Y)

/ ﬁ suit la loi p; le résultat est alors une conséquence du Corollaire (1.4) .
pour n = 2, : |

Supposons ensuite que la composante X' = (X— Y)/\/ 2 suit la loi p.
On voit alors que u est une loi symétrique; donc — Y su1t la méme loi que Y,
et I’on est ramené au cas précédent.

De fagon plus générale, on peut se poser le probléme suivant:

1) Il en résulte accessoirement que 'autre composante su1t egalement la 101 w et
~ que les deux composantes sont indépendantes.
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Soit X un vecteur aléatoire, & valeurs dans R” (avec n > 1), dont les
composantes sont indépendantes et de méme loi p. Considérons le trans-
formé Y de X par une rotation autour de l'origine, dont on désignera par
A = (a;;) la matrice. Supposons que cette rotation ne soit pas du type (a)
ci-dessus, c’est-a-dire qu’il existe un indice i tel que chacun des éléments
a;q, ..y d;y de la i-eme ligne de A soit different de 1 et de —1. Si, pour un
tel indice i, la i-me composante de Y, c’est-a-dire la variable aléatoire

Y, = ay Xy + ... +auX,,

suit 1a loi y, peut-on affirmer que p est normale et centree?
En faisant intervenir la fonction caractéristique ¢ de la loi y, le probléme
peut étre reformulé ainsi: -
Soit (ay, ..., a,) un systéme de n nombres réels satisfaisant aux condi-
tions
a? +...+a> =1, |a;| <pourtouti.

Si ¢ vérifie I’équation fonctionnelle

(2.1) | @ (1) = @(at) ... (),

peut-on affirmer que p est normale et centrée?

La réponse est évidemment affirmative dans le cas particulier ou les g;
sont égaux, car I’équation fonctionnelle (2.1) se réduit alors a I’équation
fonctionnelle ¢ (1) = (¢ (¢/y/ n)* déja étudiée au paragraphe précédent.
Dans le cas général, la réponse est encore affirmative, mais elle exige une
démonstration beaucoup plus délicate, fondée sur la théorie des lois limites
de Kolmogorov: cf. [5], Théor. 7.2.1, pag. 161, ou le probléme est géné-
ralisé au cas d’une suite infinie de variables aléatoires (indépendantes et
de méme loi). 1)

3. L’EQUATION FONCTIONNELLE (¢ (1))* = ¢ (t+u) ¢ (t—u) 0 (u).

Le théoréme qui suit est une conséquence immédiate de (1.2). Il nous
servira & démontrer de fagon trés simple le théoréme de Bernstein-Darmois.

(3.1) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristique. Alors les deux propriétés suivantes sont équivalentes :

1) A signaler que ’énoncé du théoréme de [5] cité ci-dessus est incorrect: en effet,

il,e§t faux si ’on prend a, = « et a; = 0 pour tout i > 2. Pour le rendre correct, il suffit
d’ajouter I'hypotheése: | a; | < | o | pour tout i.
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