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SUR CERTAINES EQUATIONS FONCTIONNELLES
LIEES A LA LOI NORMALE

par Aimé Fucas et Giorgio LETTA

Dans le présent article nous nous proposons de donner des démonstra-
tions élémentaires de certaines caractérisations de la loi normale. Il s’agit
de démonstrations plus simples que celles qui se trouvent couramment dans
la littérature; en outre elles ne font appel & aucune hypothése d’existence
de moments. L’outil qui est & la base de ces démonstrations est constitué
par les deux équations fonctionnelles

o) = (p(t/\/ E))c (c constante réelle > 1),
(@) = @(t+uye(t—u)b(u).

La derniére de ces équations (qui, comme nous le verrons, se ramene
aussitdt & la premiére) permet notamment de démontrer trés simplement
le théoréme de Bernstein-Darmois. En revanche la démonstration du
théoréme de Skitovitch-Darmois semble échapper aux méthodes €élémen-
taires de cet article.

1. L’EQUATION FONCTIONNELLE ¢ (¢) = (¢ (t/\/ Z))c.

(1.1) LEMME. Soient p une loi de probabilité sur R (n’admettant pas
nécessairement un moment du second ordre fini), ¢ sa fonction. caracté-

ristique. Alors on a
1 — ZRop(t 1
lim tqu( ) =5 J x2du(x) .
t—0 R ‘

Démonstration. Posons, pour tout nombre réel ¢ non nul,

1 —R(t) [ 1— cos tx
2 )R $2

I, = du(x).

1 — cos tx
t2

Le quotient

1
Vers 7 x? lorsque ¢ rend vers 0. On a donc

est compris entre O et 7 x?; en outre il converge
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L . . 1,
— x“dp(x) < lim inf I, =< lim sup I, =~ | x*du(x),
2 R t—0 t—0 2 R

ol la premiére inégalité résulte du lemme de Fatou, les autres étant évi- |
dentes. .

Remarque. 11 résulte de ce lemme que s’il existe une suite (¢,) de nombres
réels non nuls, tendant vers O et telle que I'on ait ¢ (7,) = 1 pour tout n,
alors la loi 4 a un moment du second ordre nul, c’est-3-dire qu’elle est
dégénérée. |

(1.2) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristiqgue, c¢ un nombre réel, avec ¢ > 1. Alors les deux propriétés |
suivantes sont équivalentes :

() u est normale et centrée ;

(b) @ est réelle et vérifie I’équation fonctionnelle

o (1) = (¢SO

. pour tout nombre réel t assez petit.

Démonstration. 1l suffit de démontrer I'implication (b) = (a). Supposons
donc la propriété (b) vérifié¢e. On a alors, pour tout nombre réel ¢ assez |
petit et pour tout entier n = 1: :

o) >0, go(tc_%> = (q)(t))%" -

Par conséquent, si I’on désigne par ¢” le moment du second ordre de u
(non supposé a priori fini!), le lemme précédent entraine (pour tout ¢ assez |

petit et non nul) .
1 -0 ( tc E) 1

62 = lim Sz = 3 lim ¢ 1= (p () "]
n—aoo <tc 2) n [e 0]

, 1
= —-?Log o) < +o00,

1

d’oll © — __]; 2.2
Lo ((t) = exp| 20t .

On voit ainsi que la fonction caractéristique ¢ coincide, dans un voisinage
de l’origine, avec la fonction caractéristique d’une loi normale centrée;
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d’aprés un résultat connu, cette coincidence a donc lieu partout, et le
théoréme est démontré.

Dans le cas particulier ol le nombre ¢ est un entier, on peut supprimer,
dans I’énoncé de la condition (b) du théoréme précédent, ’hypothése que ¢
est réelle. On a en effet le corollaire suivant:

(1.3) COROLLAIRE. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristique, n un entier, avec n > 1. Alors les deux propriétés suivantes
sont équivalentes :

(a) u est normale et centrée ;

(b) @ vérifie I’équation fonctionnelle

o (t) = (¢ (t] /)"

pour tout nombre réel t assez petit.

Démonstration. 11 suffit de démontrer I'implication (b) = (a). Supposons
donc que la fonction caractéristique ¢ (non supposé a priori réelle) posséde
la propriété (b); il en est alors de méme de la fonction caractéristique réelle
¢ ¢; d’aprés le théoréme précédent, celle-ci est donc la fonction caracté-
ristique d’une loi normale. Mais alors, d’aprés le théoréme classique de
Cramér-Lévy, la fonction ¢ posséde elle méme cette propriété; en d’autres
termes, la loi u est normale. Une simple vérification suffit ensuite pour
montrer que u est aussi centrée.

Le corollaire (1.3) peut étre reformulé, dans le langage des variables
aléatoires, sous la forme suivante: o

(1.4) COROLLAIRE. Soient n un entier,avec n > 1, et (X ,..., X,) un
systéme de n variables aléatoires réelles indépendantes, de méme loi p.
Alors les deux propriétés suivantes sont équivalentes :

(@) u est normale et centrée ;
(b) la loi de (X,+...+X,) [ /n coincide avec u.*)

Le corollaire (1.4) est susceptible d’une application intéressante: il
permet en effet de démontrer rapidement le théoréme de Maxwell sur la
répartition des vitesses dans un gaz parfait. '

D) ’La propriété (b) est évidemment vérifiée si p. est une loi stable stricte d’exposant
caracteristique o = 2 (au sens de [3], page 166). Le corollaire énoncé contient donc le
résultat bien connu, selon lequel une telle loi est normale et centrée.
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(1.5) TurorREME (Maxwell). Soient .n un entier, avec n > 1, et X un
- vecteur aléatoire, a valeurs dans R", dont les composantes X4, ..., X, sont
indépendantes. Alors les deux propriétés suivantes sont équivalentes :

(a) les variables aléatoires X, ..., X, ont une méme loi, qui est normale
et centrée ; ' |

(b) la loi du vecteur aléatoire X est invariante par rapport a toutef
rotation de R" autour de l’origine. :

Démonstration. 11 suffit de démontrer 'implication (b) = (a). Supposons
donc la propriété (b) vérifiée. Pour tout indice i = 1, ..., n, il existe une |
rotation autour de ’origine qui transforme X en un vecteur aléatoire dont
la premi¢re composante est égale 3 X;. (Pour avoir une telle rotation, il |
suffit de prendre une ‘matricé orthogonale, de déterminant égal a 1,!
admettant pour premiére ligne le i-¢éme vecteur de la base canonique de |
R".) On voit ainsi que chacune des composantes de X a méme loi que Xj. ‘
Il existe d’autre part une rotation autour de l’origine qui transforme X en
un vecteur aléatoire dont la premiére composante est égale a (X  t.. T X))

/ \/ n. (Pour avoir une telle rotation, il suffit de prendre une matrice orthogo-
nale, de déterminant égal & 1, admettant pour premicre ligne le vecteur
(1/ \/ Z, s 1 /\/ Z)) La conclusion résulte du corollaire (1.4).

En calquant le raisonnement utilisé lors de la démonstration du]
Théoréme (1.2), on peut obtenir une caractérisation analogue pour la loi
de Cauchy:

(1.6) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction |

caractéristique, c¢ un nombre réel, avec ¢ > 1. Alors les deux propriétés
suivantes sont équivalentes : '

(a) u est, soit la loi dégénérée a I’origine, soit une loi de Cauchy symé-
trique ; ‘ )
(b) @ est réelle, posséde une dérivée a droite & 1’origine (non supposée!
a priori finie) et vérifie I’équation fonctionnelle

o (1) = (¢ (o)

pour tout nombre réel t.

¥
j
.
i
:

Démonstration. 11 suffit de démontrer 'implication (b) = (a). Supposons
donc la propriété (b) vérifiée. Commengons par montrer que ¢ ne peut pas
s’annuler: si en effet ¢ s’annulait en ¢, elle s’annulerait en #,/c, donc
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en ty/c" pour tout n = 1. La fonction ¢ étant continue, il en résulterait
p(0) = lim ¢ (to/c") = 0, ce qui est impossible. Remarquons ensuite

n—> oo

qu’on a, pour tout nombre réel 7 et pour tout entier n = 1,

¢ (tfc") = (o ()" .

Par conséquent, si I’on désigne par —a (¢=0) la dérivée a droite de ¢ a
Jorigine (non supposée a priori finie), on a, pour tout ¢ > 0, '

—p(c™) 1 "
1 qo_(jc ) _ = lim ¢ [1—(e )]~

= |lim

-0 tc

1
ez —?Log o) < 4+ 00,

d’olt @ (¢) = exp (—at).
Puisque d’autre part ¢ est réelle, donc paire, on a, pour tout nombre
réel ¢, '

| @(t) = exp (—alt]),

ce qui démontre le théoréme.

On remarquera que le cas d’une loi dégénérée a l’origine correspond
au cas ou a est nul, c’est-a-dire au cas ou ¢ est dérivable a I’origine.

Dans le cas particulier ou ¢ est un entier, le Théoréme (1.6) peut €tre
reformulé, dans le langage des variables aléatoires, sous la forme suivante:

(1.7) COROLLAIRE. Soient n un entier, avec n > 1, et (X, ..., X,) un
systéeme de n variables aléatoires réelles indépendantes, de méme loi u. Si
la fonction caractéristique @ de p est réelle et posséde une dérivée a droite
a l’origine (non supposée a priori finie), alors les deux propriétés suivantes
sont équivalentes :

(a) p est, soit la loi dégénérée a [’origine, soit une loi de Cauchy symé-
trique ;

(b) laloide (X,+...+X,)/n coincide avec p.

Remargque. Si, étant donnée la loi p symétrique et non dégénérée, au lieu
de supposer la propriété (b) vérifiée pour un z fixé (ce qui est notre cas), on
la supposait vérifiée pour fout entier n, ceci équivaudrait & supposer que p
est une loi stable stricte d’exposant caractéristique o = 1 (au sens de [3],
page 166). D’apres le théoréme de représentation des lois stables de P. Lévy,

la loi u serait alors une loi de Cauchy, et ceci indépendamment de toute
hypothése de dérivabilité de ¢ 2 1’or1g1ne
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