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SUR CERTAINES ÉQUATIONS FONCTIONNELLES

LIÉES A LA LOI NORMALE

par Aimé Fuchs et Giorgio Letta

Dans le présent article nous nous proposons de donner des démonstrations

élémèntaires de certaines caractérisations dë la loi normale. Il s'agit

de démonstrations plus simples que celles qui se trouvent couramment dans

la littérature; en outre elles ne font appel à aucune hypothèse d'existence

de moments. L'outil qui est à la base de ces démonstrations est constitué

par les deux équations fonctionnelles

(p(t) (<p(tIy/c)y(cconstanteréelle > 1),

(<p(0)2 <p(t+u)<p(t-u) 9(u)

La dernière de ces équations (qui, comme nous le verrons, se ramène

aussitôt à la première) permet notamment de démontrer très simplement

le théorème de Bernstein-Darmois. En revanche la démonstration du

théorème de Skitovitch-Darmois semble échapper aux méthodes élémentaires

de cet article.

1. L'équation fonctionnelle (cp (t/.sfc))c.

(1.1) Lemme. Soient p une loi de probabilité sur R (n'admettantpas
nécessairement un moment du second ordre fini), <p sa fonction caractéristique.

Alors on a

f-> 0

Démonstration. Posons, pour tout nombre réel t non nul,

r _
1 - Mcp(t)

1 ~ *2

1 — COS tx
-2 dfi(x).

R tt
1 — cos tx 1

9Le quotient 5 est compris entre 0 et - x ; en outre il converge
1

f 2

vers - x2 lorsque t rend vers 0. On a donc
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x2dfi (x) ^ lim inf It ^ lim sup It^-\ x2dp (x)
r t->o *->o 2 Jr

où la première inégalité résulte du lemme de Fatou, les autres étant
évidentes.

Remarque. Il résulte de ce lemme que s'il existe une suite (tn) de nombres
réels non nuls, tendant vers 0 et telle que l'on ait cp (tn) 1 pour tout n,
alors la loi ^ a un moment du second ordre nul, c'est-à-dire qu'elle est
dégénérée.

(1.2) Théorème. Soient p une loi de probabilité sur .R, cp sa fonction
caractéristique, c un nombre réel, avec c > 1. Alors les deux propriétés
suivantes sont équivalentes :

(a) p est normale et centrée ;
(b) cp est réelle et vérifie l 'équation fonctionnelle

(p (o (.tis/Ay

pour tout nombre réel t assez petit.

Démonstration. Il suffit de démontrer l'implication (b) => (a). Supposons
donc la propriété (b) vérifiée. On a alors, pour tout nombre réel t assez

petit et pour tout entier n ^ 1 :

~
2<p(t) >0,(p[tc 2) (ï))c

Par conséquent, si l'on désigne par a2 le moment du second ordre de p
(non supposé a priori fini le lemme précédent entraîne (pour tout t assez

petit et non nul)

1 _ 1 - cpUc 21 1

lim / ,n 72 lim C" P-foKO)4. "]
Z n—* m I W 1 ^ m —> m

te 2

1

2 L°S <P (0 < + 00 >r
d'où cp (t) exp — o2t2

On voit ainsi que la fonction caractéristique cp coïncide, dans un voisinage
de l'origine, avec la fonction caractéristique d'une loi normale centrée;
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d'après un résultat connu, cette coïncidence a donc lieu partout, et le

théorème est démontré.
Dans le cas particulier où le nombre c est un entier, on peut supprimer,

dans l'énoncé de la condition (b) du théorème précédent, l'hypothèse que cp

est réelle. On a en effet le corollaire suivant:

(1.3) Corollaire. Soient ji une loi de probabilité sur R, (p sa fonction
caractéristique, n un entier, avec n > 1. Alors les deux propriétés suivantes

sont équivalentes :

(a) p est normale et centrée ;
(b) cp vérifie l 'équation fonctionnelle

cp(0 (cp (tfjnj)n

pour tout nombre réel t assez petit.

Démonstration. Il suffit de démontrer l'implication (b) => (a). Supposons
donc que la fonction caractéristique cp (non supposé a priori réelle) possède
la propriété (b) ; il en est alors de même de la fonction caractéristique réelle
cp cp ; d'après le théorème précédent, celle-ci est donc la fonction caractéristique

d'une loi normale. Mais alors, d'après le théorème classique de

Cramér-Lévy, la fonction cp possède elle même cette propriété; en d'autres
termes, la loi p est normale. Une simple vérification suffit ensuite pour
montrer que p est aussi centrée.

Le corollaire (1.3) peut être reformulé, dans le langage des variables
aléatoires, sous la forme suivante:

(1.4) Corollaire. Soient n un entier, avec n > 1, et (X l9..., Xn) un
système de n variables aléatoires réelles indépendantes, de même loi p.
Alors les deux propriétés suivantes sont équivalentes :

(a) p est normale et centrée ;
(b) la loi de (X± +... + Xn) / n coïncide avec p. *)

Le corollaire (1.4) est susceptible d'une application intéressante: il
permet en effet de démontrer rapidement le théorème de Maxwell sur la
répartition des vitesses dans un gaz parfait.

La propriété (b) est évidemment vérifiée si p, est une loi stable stricte d'exposant
caractéristique a 2 (au sens de [3], page 166). Le corollaire énoncé contient donc le
résultat bien connu, selon lequel une telle loi est normale et centrée.
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(1.5) Théorème (Maxwell). Soient n un entier, avec n > l, et X un

vecteur aléatoire, à valeurs dans R", dont les composantes Xl9 Xn sont

indépendantes. Alors les deux propriétés suivantes sont équivalentes :

(a) les variables aléatoires Xl9 Xn ont une même loi, qui est normale

et centrée ;
(b) la loi du vecteur aléatoire X est invariante par rapport à toute

rotation de Rn autour de l 'origine.

Démonstration. Il suffit de démontrer l'implication (b) => (a). Supposons

donc la propriété (b) vérifiée. Pour tout indice i 1, n, il existe une

rotation autour de l'origine qui transforme X en un vecteur aléatoire dont
la première composante est égale à Xt. (Pour avoir une telle rotation, il
suffit de prendre une matrice orthogonale, de déterminant égal à 1,

admettant pour première ligne le z-ème vecteur de la base canonique de

RM.) On voit ainsi que chacune des composantes de X a même loi que X1.

Il existe d'autre part une rotation autour de l'origine qui transforme X en

un vecteur aléatoire dont la première composante est égale à (X± +... + Xn)

I y/n. (Pour avoir une telle rotation, il suffit de prendre une matrice orthogonale,

de déterminant égal à 1, admettant pour première ligne le vecteur

(Ijyjn, '..., 1 /y/ri).) La conclusion résulte du corollaire (1.4).

En calquant le raisonnement utilisé lors de la démonstration du

Théorème (1.2), on peut obtenir une caractérisation analogue pour la loi
de Cauchy:

(1.6) Théorème. Soient p une loi de probabilité sur R, cp sa fonction
caractéristique, c un nombre réel, avec c > 1. Alors les deux propriétés
suivantes sont équivalentes :

(a) p est, soit la loi dégénérée à l 'origine, soit une loi de Cauchy symé¬

trique ;
(b) cp est réelle, possède une dérivée à droite à l'origine (non supposée

a priori finie) et vérifie l'équation fonctionnelle j

(p(t)(//> 0/c))c

pour tout nombre réel t.

Démonstration. Il suffit de démontrer l'implication (b) => (a). Supposons

donc la propriété (b) vérifiée. Commençons par montrer que q> ne peut pas

s'annuler: si en effet cp s'annulait en t0, elle s'annulerait en t0/c, donc
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en t0/c" pour tout « ï; 1. La fonction étant continue, il en résulterait

q> (0) lim (p(tjc")0, ce qui est impossible. Remarquons ensuite
n -» oo

qu'on a, pour tout nombre réel t et pour tout entier n ^ 1,

Par conséquent, si l'on désigne par —a(a^.O) la dérivée à droite de (p à

l'origine (non supposée apriori finie), on a, pour tout t > 0,

a lim —- - lim cn [1 -(<(p (0)]c~n
«->00

^
»->00

- y Log <p(t) < + oo

d'où (p (0 exp {-at).
Puisque d'autre part cp est réelle, donc paire, on a, pour tout nombre
réel t,

<p(t) exp — a \t I),

ce qui démontre le théorème.

On remarquera que le cas d'une loi dégénérée à l'origine correspond
au cas où a est nul, c'est-à-dire au cas où cp est dérivable à l'origine.

Dans le cas particulier où c est un entier, le Théorème (1.6) peut être

reformulé, dans le langage des variables aléatoires, sous la forme suivante :

(1.7) Corollaire. Soient n un entier, avec n > 1, et (X x, Xn) un

système de n variables aléatoires réelles indépendantes, de même loi p. Si
la fonction caractéristique (p de p est réelle et possède une dérivée à droite
à l'origine (non supposée a priori finie), alors les deux propriétés suivantes
sont équivalentes :

(a) p est, soit la loi dégénérée à l'origine, soit une loi de Cauchy symé¬

trique ;

(b) la loi de (X1 + + Xf)/n coïncide avec p.

Remarque. Si, étant donnée la loi p symétrique et non dégénérée, au lieu
de supposer la propriété (b) vérifiée pour un n fixé (ce qui est notre cas), on
la supposait vérifiée pour tout entier n, ceci équivaudrait à supposer que p
est une loi stable stricte d'exposant caractéristique a 1 (au sens de [3],
page 166). D'après le théorème de représentation des lois stables de P. Lévy,
la loi p serait alors une loi de Cauchy, et ceci indépendamment de toute
hypothèse de dérivabilité de cp à l'origine.
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2. Une généralisation de l'équation fonctionnelle du § 1.

Si l'on regarde attentivement la démonstration du Théorème (1.5) de

Maxwell, on s'aperçoit que, en ce qui concerne l'implication (b) => (a), on
n'a exploité l'hypothèse d'invariance par rotation que pour des rotations
bien particulières, à savoir:

(a) des rotations dont la matrice admet comme lignes des vecteurs de

la base canonique, éventuellement multipliés par -1 ;

(b) des rotations dont la matrice admet comme première ligne le

vecteur (1 /y/n, 1/yfn).

Les rotations du type (a) nous servaient en effet à démontrer préalablement
l'égalité des lois des variables aléatoires Xu Xn. Une seule rotation du

type (b) suffisait ensuite à démontrer la nature gaussienne de la loi
commune.

Dans le cas du plan, en se plaçant d'emblée dans l'hypothèse de l'égalité -

des lois, on peut même énoncer le résultat suivant, faisant intervenir une
seule rotation.

(2.1) Théorème. Soit (X, Y) un vecteur aléatoire, à valeurs dans R2,
dont les composantes sont indépendantes et de même loi p. Désignons par
(X', Y') le vecteur aléatoire

{{X-Y)jJ.2,2)

(transformé de (X, Y) par une rotation de n / 4 autour de l 'origine). Si
l'une des composantes de (X', Y') suit la loi p, alors p est normale et
centrée. *)

Démonstration. Supposons d'abord que la composante Y' (X+ Y)

l*J% suit la loi p; le résultat est alors une conséquence du Corollaire (1.4).
pour n 2.

Supposons ensuite que la composante X' (X- Y)\yjl suit la loi p.
On voit alors que p est une loi symétrique; donc - Y suit la même loi que Y,

et l'on est ramené au cas précédent.
De façon plus générale, on peut se poser le problème suivant:

x) Il en résulte accessoirement que l'autre composante suit également la loi p. et
que les deux composantes sont indépendantes.
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Soit X un vecteur aléatoire, à valeurs dans R" (avec n > 1), dont les

composantes sont indépendantes et de même loi fi. Considérons le transformé

Y de X par une rotation autour de l'origine, dont on désignera par

A (atj) la matrice. Supposons que cette rotation ne soit pas du type (a)

ci-dessus, c'est-à-dire qu'il existe un indice z tel que chacun des éléments

aiU ain de la z-ème ligne de A soit différent de 1 et de — 1. Si, pour un

tel indice z, la z-ème composante de Y, c'est-à-dire la variable aléatoire

anX± + + ainXn,

suit la loi ja, peut-on affirmer que p est normale et centrée?

En faisant intervenir la fonction caractéristique (p de la loi p, le problème

peut être reformulé ainsi :

Soit (al9 an) un système de n nombres réels satisfaisant aux conditions

a\ + + a\ 1, | at | < pour toutz.

Si cp vérifie l'équation fonctionnelle

(2.1) (p{t) (p(att) ...cp(ant),

peut-on affirmer que p est normale et centrée?

La réponse est évidemment affirmative dans le cas particulier où les at

sont égaux, car l'équation fonctionnelle (2.1) se réduit alors à l'équation
fonctionnelle (p (t) (cp (t/^/~n)n déjà étudiée au paragraphe précédent.

Dans le cas général, la réponse est encore affirmative, mais elle exige une

démonstration beaucoup plus délicate, fondée sur la théorie des lois limites
de Kolmogorov: cf. [5], Théor. 7.2.1, pag. 161, où le problème est

généralisé au cas d'une suite infinie de variables aléatoires (indépendantes et

de même loi). 1)

3. L'équation fonctionnelle (cp (t))2 (p (t + u) cp (t—u) 6 (w).

Le théorème qui suit est une conséquence immédiate de (1.2). Il nous
servira à démontrer de façon très simple le théorème de Bernstein-Darmois.

(3.1) Théorème. Soient fi une loi de probabilité sur R, (p sa fonction
caractéristique. Alors les deux propriétés suivantes sont équivalentes :

x) A signaler que l'énoncé du théorème de [5] cité ci-dessus est incorrect: en effet,
il est faux si Ton prend ax — a et ai — 0 pour tout i > 2. Pour le rendre correct, il suffit
d'ajouter l'hypothèse: | a; | < | oc | pour tout /.
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(a) fi est normale ;
(b) il existe un voisinage V de l'origine dans R et une application 9

de V dans C telle que l'on ait

(3.2) (<p(0)2 (p(t+u)q)(t—u)9(u)

pour tout couple t, u d'éléments de V.

Démonstration. Il suffit de démontrer l'implication (b) => (a). Supposons
donc la propriété (b) vérifiée. Quitte à remplacer cp par cpcp, on peut supposer
cp réelle. L'équation (3.2) fournit alors, pour / 0, 1 (cp (u))2 6 (u), de

sorte qu'elle peut s'écrire sous la forme équivalente

(cp (t) cp (u))2 cp(t+u)cp(t-u).

En particulier, pour t u s/2, on trouve (<(p (s/2))4' cp (s). La
conclusion résulte alors du Théorème (1.2) pour c — 4.

(3.3) Remarque. Le cas d'une loi fi dégénérée correspond à celui où

l'équation (3.2) est vérifiée avec une fonction 0 identiquement égale à 1.

4. Le théorème de Bernstein-Darmois

Soit (Xi, X2) un couple de variables aléatoires réelles, de même loi.
Si le couple (X1 + X2,X1-X2) est formé de variables aléatoires

indépendantes, alors la loi commune de X1 et de X2 est normale: c'est le

théorème de Bernstein-Darmois sous sa forme primitive. Il fut d'abord
démontré par S. Bernstein [1] avec l'hypothèse que la loi commune de Xt
et de X2 possède des moments finis jusqu'à l'ordre 4. Plus tard G. Darmois
[2] réussit à généraliser ce résultat, tout en s'affranchissanLde l'hypothèse
concernant l'existence des moments. Il employa à cet effet une technique
de différences finies, qui lui permit également de démontrer Une généralisation

ultérieure, bien plus profonde, connue sous le nom de théorème de

Skitovitch-Darmois (cf. [6]).
Nous présentons ci-dessous le théorème de Bernstein-Darmois, que nous

démontrons à l'aide de l'équation fonctionnelle du paragraphe 3.

(4.1) Théorème. Soit X un vecteur aléatoire à valeurs dans R2, dont

les composantes Xl9 X2 sont des variables aléatoires indépendantes. Soit
A (ai3) une matrice réelle (2, 2), et supposons que les composantes du
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vecteur aléatoire Y AX, c'est-à-dire les deux variables aléatoires réelles

Yu Y2 définies par

Y1 a11X1 + ^12^2

Y2 — ci2iX1 + a22X2

soient elles aussi indépendantes. Alors, pour chaque indice i tel que la i-ème

colonne de A soit formée d'éléments non nuls, la loi de Xt est normale

(éventuellement dégénérée).

Pour rendre plus claire la démonstration, nous commencerons par
démontrer un lemme préliminaire :

(4.2) Lemme. Soit X un vecteur aléatoire à valeurs dans R2, de

composantes Xl9 X2, et soit $ sa fonction caractéristique. Les deux propriétés

suivantes sont alors équivalentes :

(a) (Xu X2) est un couple de variables aléatoires indépendantes ;

(b) pour tout système de scalaires su s2, u,v, on a

<P(s1, s2)#(s1 +u, s2 +v) 0(s1 +u, s2)$(su s2 +v)

Démonstration du lemme.

Il suffit de démontrer (b) => (a). Si l'on désigne par q>t la fonction

caractéristique de X{, l'hypothèse (b) fournit (pour s± s2 0)

<p(u,v) <P(u,0)<P(0,v) <pi (u) (p2 (v)

c'est-à-dire l'indépendance du couple (Xl9 X2).

Démonstration du théorème. Supposons, pour fixer les idées, que la
première colonne de A soit formée d'éléments non nuls, et montrons que
la loi de Xx est normale. Quitte à multiplier chacune des lignes de A par
un scalaire convenable, on pourra supposer

(4.3) an a211

1) Supposons d'abord que la matrice A soit singulière. En vertu de

notre hypothèse on a alors Y1 Y2. Par conséquent Y1 est indépendante
d'elle même, c'est-à-dire p.s. égale à une constante:

Y1 — X± + a12X2 c p.s. :

il en résulte

X1 c - a12X2 p.s.,
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de sorte que X1 est également indépendante d'elle même, c'est-à-dire p.s.
égale à une constante.

2) Supposons maintenant que la matrice A ne soit pas singulière, et
désignons par (pt la fonction caractéristique de Xt et par <P celle de X:

(4.4) <?> (*!,t2)(t2)cp2 (t2).

Désignons en outre par xj/ la fonction caractéristique du vecteur aléatoire
Y AX, c'est-à-dire la fonction définie par

(4-5) i/f(st ,s2) ^(s1+s2,s1a12+s2a22).

En appliquant le lemme précédent au couple de variables aléatoires
indépendantes (YuY2), on trouve, pour tout système de scalaires st, s2, u,

^(s1,s2)iI/(s]l+u,s2-u) \l/(s1+u,s2)xl/(sl,s2-u).

Grâce à (4.5), cette relation s'écrit, en fonction de <P,

& + 52, 5I#I2 + S2Ü22) & (^l + s2> sla12 s2a22 —UÜ22)

^(5! +52 +u, s1a12+s2a22 +ua12)^(s1 +s2-u, +'s2fl22 —ua22) •

Etant donné le scalaire t, choisissons maintenant su s2 de façon à satisfaire
aux conditions

f s± + 52 t

1 2 H" S2ä22 0

(ce qui est possible, car la matrice A n'est pas singulière). La relation
précédente devient alors

$(t,0)$(t,u(a12-a22)) $(
c'est-à-dire, grâce à (4.4),

(4.6) (Pi{t)(P2{^)Vi{t)(p2(u{al2-a22))
(Pi(t+u)(p2(ua12)(p1(t-u)(p2

Or, si | m | est assez petit, on a cp2 (u+ 0, de sorte que la
relation précédente peut s'écrire sous la forme

(4.7) (<Pi(0)2 (p1(t +u)cp1{t-).
Il en résulte, grâce à (3.1), que <pt est la fonction caractéristique d'une loi
normale.
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A titre d'exemple, nous analyserons l'énoncé (4.1) dans deux cas parti-
culiers.

a) Supposons d'abord

c'est-à-dire Yx Xl9 Y2 - X± + X2. Si chacun des couples (Xl9 X2),

(Yu Y2) est formé de variables aléatoires indépendantes, le Théorème (4.1)

permet d'affirmer que la variable aléatoire X1 est normale (en revanche,

on ne peut rien affirmer sur X2). On peut d'ailleurs préciser que la variable
aléatoire X± est dégénérée. Il suffit pour cela de remarquer que, dans le cas

présent, l'équation (4.6) se réduit à. la forme (4.7) avec 0 (u) 1 (cf. (3.3)).

b) Supposons ensuite

c'est-à-dire Y± Xx cos co — X2 sin co, Y2 X1 sin co + X2 cos co. Si

chacun des couples (Xl9 X2)9 (Tl5 Y2) est formé de variables aléatoires
indépendantes, et si co n 'est pas un multiple entier de % / 2, le Théorème (4.1)
permet d'affirmer que chacune des variables aléatoires Xl9 X2 est normale
(en revanche, si co est un multiple entier de n / 2, on ne peut rien affirmer,
ni sur X1 ni sur X2). On reconnaîtra ici un résultat ayant des analogies avec
le Théorème (2.1).

Remarquons enfin que l'énoncé du théorème de Bernstein-Darmois
tel qu'il figure dans [3] (pag. 77 et pag. 499) est incorrect. En effet il entraîne
notamment que, dans les hypothèses du cas particulier a) ci-dessus, la
variable aléatoire X2 est normale, ce qui est manifestement faux (il suffit,
pour s'en convaincre, de prendre X± constante et X2 non normale).

Voici l'énoncé du théorème de Skitovitch-Darmois mentionné au
paragraphe précédent:

(5.1) Théorème. Soit X un vecteur aléatoire, à valeurs dans R", dont
les composantes Xl9..., Xn sont indépendantes. Considérons les deux
variables aléatoires Yl9 Y2 définies par les relations

A

5. Le théorème de Skitovitch-Darmois
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Y± axX± + + anXn

[ Y2 biX1 + + bnXn

où les coefficients ah bt sont des scalaires donnés. Si les variables aléatoires
Yu Y2 sont elles mêmes indépendantes, alors, pour chaque indice i tel
que affii #= 0, la loi de Xt est normale (éventuellement dégénérée).

Ce théorème est bien plus profond que celui de Bernstein-Darmois
(auquel il se réduit pour n 2). Il permet en effet de démontrer directement
le théorème de Cramér-Lévy, ainsi que certains résultats de a-factorisation. *)

Il n'est donc pas étonnant que toutes les démonstrations connues du
théorème de Skitovitch-Darmois fassent appel à des résultats profonds de
la théorie des fonctions caractéristiques analytiques (théorème de
Marcinkiewicz, théorèmes de a-factorisation). Voici en revanche une
généralisation du théorème de Bernstein-Darmois qu'on peut obtenir par nos
méthodes d'équations fonctionnelles.

(5.1) Théorème. Soit X un vecteur aléatoire à valeurs dans RM (n^. 2),
dont les composantes Xl5 Xn sont des variables aléatoires indépendantes.
Soit A — (aij) une matrice réelle {n, n) non singulière, et supposons que les

composantes du vecteur aléatoire Y AX sont également indépendantes.
Alors, pour chaque indice i tel que la i-ème colonne de A possède

au moins deux éléments non nuls, la loi de X{ est normale (éventuellement
dégénérée

Pour rendre plus claire la démonstration, nous commencerons par
démontrer un lemme préliminaire:

(5.2) Lemme. Soit X un vecteur aléatoire à valeurs dans Rn (n ^ 2).
dont les composantes Xu...,Xn (par rapport à la base canonique (e1?..., ,en)
de Rn) sont des variables aléatoires indépendantes2). Alors la fonction
caractéristique 0 de X vérifie la relation

<P (s) $ (s + uet + ve2) $ (s + ue^ $ (s + ve2)

pour tout vecteur s de Rn et pour tout couple (u, v) de scalaires.

b Voici,par exemple, comment on peut en déduire le théorème de Cramér-Lévy
(cf. [4], pag. 193). Soit X, p. un couple de lois de probabilité sur R, dont le produit de convolution

est une loi normale; prenons un système de quatre variables aléatoires indépendantes

X, X', Y, Y' tel que les lois de X et de X' coïncident avec X et celles de Y et
de Y ' avec p.. Les deux variables aléatoires (X + Y + (X' + Y 0, (X + Y)- (X/ + Y/
sont alors normales, non correlées, donc indépendantes. En appliquant le théorème de
Skitovitch-Darmois pour n 4, on en déduit que chacune des lois X, p. est normale.

2) En fait, il suffirait de supposer que le triplet formé de Xlf X2 et du système
(I3,..., Xn) est indépendant.
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Démonstration du lemme. Désignons par (p\ la fonction caractéristique
de Xj et par stla z-ème composante du vecteur s (par rapport à la base

canonique de R"). On a alors
n

® (s) (pi(so<p2 (s2) n <?< (5i) '
i 3

n

^(s+ue! +ve2) (Pi (st («2 +v) n Vi0;)
i 3

n

$ (s) + uej) <Pi (sx + m) <p2 (s2) n Vi 0«) »

i=3
n

0 (s +ize2) ç>! (st) <p2 (s2 +v) Il ?«(*).
i 3

d'où la conclusion.

Démonstration du théorème. Supposons que la première colonne
de A possède deux éléments non nuls, et montrons que la loi de X± est

normale. On pourra supposer, par exemple, a1± ^ 0 et ö2i ^ 0. Quitte
à multiplier chacune des deux premières lignes de A par un scalaire convenable,

on pourra même supposer

(5.3) fln a211.

Désignons par L l'application linéaire de Rn dans lui-même dont la matrice,

par rapport à la base canonique de RM, est la transposée de A. On a donc,

pour tout /,

(5.4) Let at,

où a£ désigne le vecteur (an,... ain).

Désignons en outre par (pt la fonction caractéristique de Xt et par 0
celle de X :

(5.5) <P(ft.,-, t„) Vi(h)-VniQ-
Le vecteur aléatoire Y AX admet alors comme fonction caractéristique
la fonction composée i// ^oL. En lui appliquant le lemme précédent,
on trouve, pour tout scalaire u et pour tout vecteur s de R",

xj/ (s) x// (s + ue1 - ue2) i/s (s + ue±) \b (s - we2)

c'est-à-dire

0(Ls)0(Ls+ual — wa2) ^(Ls+ua1)^(Ls-wa2).

Etant donné le scalaire t, appliquons cette relation au vecteur s déterminé
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par Ls te 1 (un tel vecteur existe puisque la matrice de L est régulière).
On obtient

<&(te1)<P(te1 -\-u{2i1 — a2)) ^>(te1 + ual)<P(te1 — wa2),

c'est-à-dire, grâce à (5.5) et (5.3),

n

(5.6) (pi(t)cpi(t) n <Pi(u(au-a2i))
i — 2

n n

q>i(t+u) n <Pi(uau)<Pi{t-u) n
i 2 i 2

Or, si I u | est assez petit, on a (pt(u (ali — a2i)) # 0 pour tout i, de sorte

que la relation précédente peut s'écrire sous la forme

(5.7) (cp1 (0)2 q>1(t+ü)q>1(t-u9 (u)

Il en résulte, grâce à (3.1), que <p± est la fonction caractéristique d'une loi
normale.

6. Retour sur les équations fonctionnelles
DES PARAGRAPHES PRÉCÉDENTS

Dans l'étude des équations fonctionnelles des paragraphes précédents,

nous nous étions systématiquement bornés à rechercher les solutions dans

l'ensemble des fonctions caractéristiques. Nous nous proposons maintenant
d'étudier ces mêmes équations (ou des équations analogues) dans l'ensemble
de toutes les fonctions complexes continues définies dans R.

Nous commencerons par l'équation fonctionnelle

(6.1) (/(*) l/(») I)2 =/(*+«)/(*"«).'

qui se réduit manifestement à l'équation (3.2) dans le cas où/est une fonction

caractéristique.

(6.2) Théorème. Soit f une application continue de R dans C, telle

que f(0)=1.
Alors les deux propriétés suivantes sont équivalentes :

(a) f vérifie la relation (6.1) pour tout couple t, u de nombres réels ;
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(b) il existe deux nombres réels a, b tels que Von ait

f{t) exp (at2+ibt)

pour tout nombre réel t.

Nous démontrerons d'abord le lemme suivant:

(6.3) Lemme. Soit H une partie fermée de R possédant les propriétés

suivantes :

(a) 0 appartient à H;
(b) si t appartient à H, alors —t appartient à H;
(c) 21 appartient à H si et seulement si t appartient à H;
(d) si t + u, t—u appartiennent à H, alors t appartient à H.

Dans ces conditions on assoit H — {0}, soit H R.

Démonstration du Lemme. Supposons que l'ensemble H possède un
élément t0 non nul. D'après (b), on pourra supposer t0 positif. En vertu
de (b) et de (c), il suffira de montrer que H contient l'intervalle [0, t0]. Or
il résulte de (c) que H contient tout nombre de la forme t0l2n avec n ^ 0.

La propriété (d) entraîne alors que H contient aussi tout nombre de la
forme kt0 / 2" avec 0 ^ k ^ T. Puisque H est fermé, il contient l'intervalle

[0, t0], ce qui achève la démonstration du Lemme.

Démonstration du théorème. Il suffit de démontrer l'implication (a) => (b).
Supposons donc la propriété (a) vérifiée.

1) Plaçons-nous d'abord dans le cas où la fonction / est réelle et positive.

La relation (6.1) devient alors

(f(t)f(u))2 /(t+u -u).
Puisque / est continue et non nulle à l'origine, il existe un nombre réel t0

non nul tel que l'on ait/(/0) > 0. Désignons par a la constante réelle déterminée

par la condition f(t0) exp (atl), et posons, pour tout nombre
réel t,

m0(0
exp (at2)

On a alors g (0) 1 ,g (t0) 1; en outre la fonction g vérifie la même
équation fonctionnelle que /:

(g (0 g O))2 g (t+u) g (t-u).
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En particulier: {9(O)4 9 (20

Il en résulte que l'ensemble fermé H — {t:g(t) 1} vérifie les
hypothèses du Lemme (6.3).Comme d'autre part H contient le nombre réel non
nul to, il coïncide avec R, ce qui revient à dire que l'on a f(t) exp (at2)

pour tout t. \

2) Supposons ensuite |/| 1. L'équation (6.1) devient alors j

(6.4) (/(O)2 f(t + u)f|

Puisque la fonction / est continue et qu'elle prend la valeur 1 a l'origine, I

il existe un intervalle ouvert /, centré à l'origine, dans lequel / ne prend j

jamais la valeur — 1. Pour tout élément t de cet intervalle, désignons par j

9 (t) la détermination principale de l'argument de /(r). La fonction 9 est j

alors continue, nulle à l'origine et vérifie l'équation 2 9 (t) 6(t + u)J

+ 9 (t—u) pour tout couple t, u de nombres réels tels que t + u et t — u j

appartiennent à I.
En d'autres termes, 9 est une fonction linéaire affine : il existe donc une

constante réelle b telle que l'on ait 9 (t) bt (c'est-à-dire /(t) — exp (ibt)) j

pour tout élément t de I. Si l'on pose ^ j

m /(0g(t)
exp (ibt)

la fonction g vérifie, elle aussi, l'équation (6.4), donc en particulier l'équation

(ig (t))2 g (21). Puisque d'autre part elle est identiquement égale
à 1 sur /, il en résulte qu'elle est égale à 1 partout. En d'autres termes, on a

f(t) exp (ibt).

3) Plaçons-nous enfin dans le cas général. Puisque /vérifie l'équation
fonctionnelle (6.1), il en est de même de la fonction réelle positive |/|.
Celle-ci a donc (d'après 1)) la forme:

1/(0 I exp (at2)

On peut alors considérer le rapport // ; c'est une fonction de module
égal à 1, vérifiant la même équation fonctionnelle que /. Par conséquent

on a, d'après 2),
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Les deux dernières relations montrent que / a la forme désirée.

Remarque. De façon plus générale, on peut montrer que, si / est une

application continue de R dans C vérifiant l'équation fonctionnelle (6.1)

(mais non assujettie à la condition/(0) 1), alors/ est, soit identiquement

nulle, soit de la forme

(6.5) f{t) exp {at2 +ibt + ic),

où a, b, c sont des constantes réelles.

En effet, si l'on suppose/(0) 0, l'équation (6.1) (pour t u) montre

que/est identiquement nulle. Supposons donc/(0) ^ 0. La même équation
(pour t u 0) fournit alors | / (0) | 1. Par conséquent la fonction

f\f{0) vérifie encore l'équation fonctionnelle (6.1); puisqu'elle prend la
valeur 1 à l'origine, le théorème précédent entraîne qu'elle est de la forme

exp {at2jribt). Si donc on pose/(0) exp (zc), on obtient

f{t) f{0) exp (at2+ibt) exp {at2 +ibt + ic)

On remarquera qu'inversement la fonction (6.5) vérifie l'équation
fonctionnelle (6.1) quelles que soient les constantes réelles a, é, c; cependant
elle n'est une fonction caractéristique que dans le cas où la constante a est

négative et la constante c est un multiple entier de 2n.
Occupons-nous à présent des deux autres équations fonctionnelles

rencontrées au paragraphe 1, à savoir

où c est une constante réelle, avec c > 1.

Dans chacune de ces deux équations la fonction inconnue <p sera supposée

réelle, paire et strictement positive sur R. En considérant la fonction

f{t) Log cp (a/PJ) (resp. f{t) Log cp {t)), l'équation (6.6)
(resp. (6.7)) se réduit à

Dans cette dernière équation la fonction inconnue / est réelle, paire,
nulle à l'origine: il suffit donc de s'intéresser à sa restriction à l'intervalle
] 0, + oo [. Or, si l'on désigne par r le graphe de cette restriction, l'équa-

(6.6)

(6.7)

cp (0 {cp {tjjc))C

Cp(t) (cp{tlc))c,

(6.8) f{t)
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tion (6.8) exprime le fait que F est invariant par rapport à l'homothétie de
centre 0 et de rapport c, c'est-à-dire que l'on a c F F. Pour avoir une
solution, il suffit donc de se donner un graphe arbitraire F0 sur l'intervalle
]l,c] et de poser ensuite F ucT0. La figure ci-dessous fournit
un exemple.1) neZ

Il est évident qu'en choisissant convenablement F0, on peut obtenir des
solutions de classe C00 sur ] 0, + oo[ et tendant vers 0 à l'origine.

On peut d'ailleurs remarquer que chacune des équations (6.6), (6.7),
(6.8) est de la forme / hofog_1 (où / est la fonction inconnue). Le
résultat précédent est alors un cas particulier de la proposition suivante :

(6.9) Proposition. Soient F, U deux ensembles, g une bijection de T
sur lui-même, h une bijection de U sur lui-même. Considérons l'équation
fonctionnelle

(6.10) f hofog'1,
où la fonction inconnue f est une application de T dans U%

Supposons qu'il existe une partie T0 de T telle que (gn (F0)) neZ constitue

une partition de T. Dans ces conditions,pour toute application f0 de T0
dans U, il existe une application unique f de T dans U qui prolonge f0 et
qui vérifie l'équation fonctionnelle (6.10).

Démonstration. Unicité. Soit / une solution de (6.10). On a alors,
pour tout entier n,

/ ffofo g~n

En particulier, si / prolonge /0, on a, pour tout élément t de gn (T0),

x) L'idée de cette construction nous a été suggérée par Ph. Artzner.
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m hn[fo(g~nm'
Puisque (g11 (T0))neZ est une partition de T, la formule précédente détermine

univoquément / sur l'ensemble T tout entier.

Existence. Désignons par T0 le graphe de /0 et par H la bijection
de T x U sur lui-même définie par H (t, u) (,g (t), h (w)). L'ensemble

r u Hn(r0)
nez

est alors le graphe d'une application/de T dans U. Puisque r contient r09f
prolonge f0. On a en outre H (L) T, et cette relation montre que/vérifie
l'équation fonctionnelle (6.10).
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