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SUR CERTAINES EQUATIONS FONCTIONNELLES
LIEES A LA LOI NORMALE

par Aimé Fucas et Giorgio LETTA

Dans le présent article nous nous proposons de donner des démonstra-
tions élémentaires de certaines caractérisations de la loi normale. Il s’agit
de démonstrations plus simples que celles qui se trouvent couramment dans
la littérature; en outre elles ne font appel & aucune hypothése d’existence
de moments. L’outil qui est & la base de ces démonstrations est constitué
par les deux équations fonctionnelles

o) = (p(t/\/ E))c (c constante réelle > 1),
(@) = @(t+uye(t—u)b(u).

La derniére de ces équations (qui, comme nous le verrons, se ramene
aussitdt & la premiére) permet notamment de démontrer trés simplement
le théoréme de Bernstein-Darmois. En revanche la démonstration du
théoréme de Skitovitch-Darmois semble échapper aux méthodes €élémen-
taires de cet article.

1. L’EQUATION FONCTIONNELLE ¢ (¢) = (¢ (t/\/ Z))c.

(1.1) LEMME. Soient p une loi de probabilité sur R (n’admettant pas
nécessairement un moment du second ordre fini), ¢ sa fonction. caracté-

ristique. Alors on a
1 — ZRop(t 1
lim tqu( ) =5 J x2du(x) .
t—0 R ‘

Démonstration. Posons, pour tout nombre réel ¢ non nul,

1 —R(t) [ 1— cos tx
2 )R $2

I, = du(x).

1 — cos tx
t2

Le quotient

1
Vers 7 x? lorsque ¢ rend vers 0. On a donc

est compris entre O et 7 x?; en outre il converge

L’Enseignement mathém., t. XXV, fasc. 1-2. ‘ | 3
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L . . 1,
— x“dp(x) < lim inf I, =< lim sup I, =~ | x*du(x),
2 R t—0 t—0 2 R

ol la premiére inégalité résulte du lemme de Fatou, les autres étant évi- |
dentes. .

Remarque. 11 résulte de ce lemme que s’il existe une suite (¢,) de nombres
réels non nuls, tendant vers O et telle que I'on ait ¢ (7,) = 1 pour tout n,
alors la loi 4 a un moment du second ordre nul, c’est-3-dire qu’elle est
dégénérée. |

(1.2) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristiqgue, c¢ un nombre réel, avec ¢ > 1. Alors les deux propriétés |
suivantes sont équivalentes :

() u est normale et centrée ;

(b) @ est réelle et vérifie I’équation fonctionnelle

o (1) = (¢SO

. pour tout nombre réel t assez petit.

Démonstration. 1l suffit de démontrer I'implication (b) = (a). Supposons
donc la propriété (b) vérifié¢e. On a alors, pour tout nombre réel ¢ assez |
petit et pour tout entier n = 1: :

o) >0, go(tc_%> = (q)(t))%" -

Par conséquent, si I’on désigne par ¢” le moment du second ordre de u
(non supposé a priori fini!), le lemme précédent entraine (pour tout ¢ assez |

petit et non nul) .
1 -0 ( tc E) 1

62 = lim Sz = 3 lim ¢ 1= (p () "]
n—aoo <tc 2) n [e 0]

, 1
= —-?Log o) < +o00,

1

d’oll © — __]; 2.2
Lo ((t) = exp| 20t .

On voit ainsi que la fonction caractéristique ¢ coincide, dans un voisinage
de l’origine, avec la fonction caractéristique d’une loi normale centrée;
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d’aprés un résultat connu, cette coincidence a donc lieu partout, et le
théoréme est démontré.

Dans le cas particulier ol le nombre ¢ est un entier, on peut supprimer,
dans I’énoncé de la condition (b) du théoréme précédent, ’hypothése que ¢
est réelle. On a en effet le corollaire suivant:

(1.3) COROLLAIRE. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristique, n un entier, avec n > 1. Alors les deux propriétés suivantes
sont équivalentes :

(a) u est normale et centrée ;

(b) @ vérifie I’équation fonctionnelle

o (t) = (¢ (t] /)"

pour tout nombre réel t assez petit.

Démonstration. 11 suffit de démontrer I'implication (b) = (a). Supposons
donc que la fonction caractéristique ¢ (non supposé a priori réelle) posséde
la propriété (b); il en est alors de méme de la fonction caractéristique réelle
¢ ¢; d’aprés le théoréme précédent, celle-ci est donc la fonction caracté-
ristique d’une loi normale. Mais alors, d’aprés le théoréme classique de
Cramér-Lévy, la fonction ¢ posséde elle méme cette propriété; en d’autres
termes, la loi u est normale. Une simple vérification suffit ensuite pour
montrer que u est aussi centrée.

Le corollaire (1.3) peut étre reformulé, dans le langage des variables
aléatoires, sous la forme suivante: o

(1.4) COROLLAIRE. Soient n un entier,avec n > 1, et (X ,..., X,) un
systéme de n variables aléatoires réelles indépendantes, de méme loi p.
Alors les deux propriétés suivantes sont équivalentes :

(@) u est normale et centrée ;
(b) la loi de (X,+...+X,) [ /n coincide avec u.*)

Le corollaire (1.4) est susceptible d’une application intéressante: il
permet en effet de démontrer rapidement le théoréme de Maxwell sur la
répartition des vitesses dans un gaz parfait. '

D) ’La propriété (b) est évidemment vérifiée si p. est une loi stable stricte d’exposant
caracteristique o = 2 (au sens de [3], page 166). Le corollaire énoncé contient donc le
résultat bien connu, selon lequel une telle loi est normale et centrée.
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(1.5) TurorREME (Maxwell). Soient .n un entier, avec n > 1, et X un
- vecteur aléatoire, a valeurs dans R", dont les composantes X4, ..., X, sont
indépendantes. Alors les deux propriétés suivantes sont équivalentes :

(a) les variables aléatoires X, ..., X, ont une méme loi, qui est normale
et centrée ; ' |

(b) la loi du vecteur aléatoire X est invariante par rapport a toutef
rotation de R" autour de l’origine. :

Démonstration. 11 suffit de démontrer 'implication (b) = (a). Supposons
donc la propriété (b) vérifiée. Pour tout indice i = 1, ..., n, il existe une |
rotation autour de ’origine qui transforme X en un vecteur aléatoire dont
la premi¢re composante est égale 3 X;. (Pour avoir une telle rotation, il |
suffit de prendre une ‘matricé orthogonale, de déterminant égal a 1,!
admettant pour premiére ligne le i-¢éme vecteur de la base canonique de |
R".) On voit ainsi que chacune des composantes de X a méme loi que Xj. ‘
Il existe d’autre part une rotation autour de l’origine qui transforme X en
un vecteur aléatoire dont la premiére composante est égale a (X  t.. T X))

/ \/ n. (Pour avoir une telle rotation, il suffit de prendre une matrice orthogo-
nale, de déterminant égal & 1, admettant pour premicre ligne le vecteur
(1/ \/ Z, s 1 /\/ Z)) La conclusion résulte du corollaire (1.4).

En calquant le raisonnement utilisé lors de la démonstration du]
Théoréme (1.2), on peut obtenir une caractérisation analogue pour la loi
de Cauchy:

(1.6) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction |

caractéristique, c¢ un nombre réel, avec ¢ > 1. Alors les deux propriétés
suivantes sont équivalentes : '

(a) u est, soit la loi dégénérée a I’origine, soit une loi de Cauchy symé-
trique ; ‘ )
(b) @ est réelle, posséde une dérivée a droite & 1’origine (non supposée!
a priori finie) et vérifie I’équation fonctionnelle

o (1) = (¢ (o)

pour tout nombre réel t.

¥
j
.
i
:

Démonstration. 11 suffit de démontrer 'implication (b) = (a). Supposons
donc la propriété (b) vérifiée. Commengons par montrer que ¢ ne peut pas
s’annuler: si en effet ¢ s’annulait en ¢, elle s’annulerait en #,/c, donc
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en ty/c" pour tout n = 1. La fonction ¢ étant continue, il en résulterait
p(0) = lim ¢ (to/c") = 0, ce qui est impossible. Remarquons ensuite

n—> oo

qu’on a, pour tout nombre réel 7 et pour tout entier n = 1,

¢ (tfc") = (o ()" .

Par conséquent, si I’on désigne par —a (¢=0) la dérivée a droite de ¢ a
Jorigine (non supposée a priori finie), on a, pour tout ¢ > 0, '

—p(c™) 1 "
1 qo_(jc ) _ = lim ¢ [1—(e )]~

= |lim

-0 tc

1
ez —?Log o) < 4+ 00,

d’olt @ (¢) = exp (—at).
Puisque d’autre part ¢ est réelle, donc paire, on a, pour tout nombre
réel ¢, '

| @(t) = exp (—alt]),

ce qui démontre le théoréme.

On remarquera que le cas d’une loi dégénérée a l’origine correspond
au cas ou a est nul, c’est-a-dire au cas ou ¢ est dérivable a I’origine.

Dans le cas particulier ou ¢ est un entier, le Théoréme (1.6) peut €tre
reformulé, dans le langage des variables aléatoires, sous la forme suivante:

(1.7) COROLLAIRE. Soient n un entier, avec n > 1, et (X, ..., X,) un
systéeme de n variables aléatoires réelles indépendantes, de méme loi u. Si
la fonction caractéristique @ de p est réelle et posséde une dérivée a droite
a l’origine (non supposée a priori finie), alors les deux propriétés suivantes
sont équivalentes :

(a) p est, soit la loi dégénérée a [’origine, soit une loi de Cauchy symé-
trique ;

(b) laloide (X,+...+X,)/n coincide avec p.

Remargque. Si, étant donnée la loi p symétrique et non dégénérée, au lieu
de supposer la propriété (b) vérifiée pour un z fixé (ce qui est notre cas), on
la supposait vérifiée pour fout entier n, ceci équivaudrait & supposer que p
est une loi stable stricte d’exposant caractéristique o = 1 (au sens de [3],
page 166). D’apres le théoréme de représentation des lois stables de P. Lévy,

la loi u serait alors une loi de Cauchy, et ceci indépendamment de toute
hypothése de dérivabilité de ¢ 2 1’or1g1ne




2. UNE GENERALISATION DE L’EQUATION FONCTIONNELLE DU § 1.

Si I'on regarde attentivement la démonstration du Théoréme (1.5) de
Maxwell, on s’apercoit que, en ce qui concerne I'implication (b) = (a), on
n’a exploité I’hypothése d’invariance par rotation que pour des rotations
bien particuliéres, a savoir: |

(a) des rotations dont la matrice admet comme lignes des vecteurs de
la base canonique, éventuellement multipliés par —1;

(b) des rotations dont la matrice admet comme premiére ligne le
vecteur (1/\/11, ves 1/ﬁ).

Les rotations du type (a) nous servaient en effet a démontrer préalablement
I’égalité des lois des variables aléatoires X, ..., X,. Une seule rotation du
type (b) suffisait ensuite & démontrer la nature gaussienne de la loi com-
mune. .

Dans le cas du plan, en se plagant d’emblée dans I’hypothése de I’égalité
des lois, on peut méme énoncer le résultat suivant, faisant intervenir une
seule rotation.

AY

(2.1) TaEOREME. Soit (X, Y) un vecteur aléatoire, & valeurs dans R?,
dont les composantes sont indépendantes et de méme loi u. Désignons par
(X', Y') le vecteur aléatoire

(X=D)/2, X+1)2)

(transformé de (X, Y) par une rotation de m |4 autour de I’origine). Si
l'une des composantes de (X', Y') suit la loi p, alors p est normale et
centrée. 1) | |

Démonstration. Supposons d’abord que la composante Y’ = (X+ Y)

/ ﬁ suit la loi p; le résultat est alors une conséquence du Corollaire (1.4) .
pour n = 2, : |

Supposons ensuite que la composante X' = (X— Y)/\/ 2 suit la loi p.
On voit alors que u est une loi symétrique; donc — Y su1t la méme loi que Y,
et I’on est ramené au cas précédent.

De fagon plus générale, on peut se poser le probléme suivant:

1) Il en résulte accessoirement que 'autre composante su1t egalement la 101 w et
~ que les deux composantes sont indépendantes.
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Soit X un vecteur aléatoire, & valeurs dans R” (avec n > 1), dont les
composantes sont indépendantes et de méme loi p. Considérons le trans-
formé Y de X par une rotation autour de l'origine, dont on désignera par
A = (a;;) la matrice. Supposons que cette rotation ne soit pas du type (a)
ci-dessus, c’est-a-dire qu’il existe un indice i tel que chacun des éléments
a;q, ..y d;y de la i-eme ligne de A soit different de 1 et de —1. Si, pour un
tel indice i, la i-me composante de Y, c’est-a-dire la variable aléatoire

Y, = ay Xy + ... +auX,,

suit 1a loi y, peut-on affirmer que p est normale et centree?
En faisant intervenir la fonction caractéristique ¢ de la loi y, le probléme
peut étre reformulé ainsi: -
Soit (ay, ..., a,) un systéme de n nombres réels satisfaisant aux condi-
tions
a? +...+a> =1, |a;| <pourtouti.

Si ¢ vérifie I’équation fonctionnelle

(2.1) | @ (1) = @(at) ... (),

peut-on affirmer que p est normale et centrée?

La réponse est évidemment affirmative dans le cas particulier ou les g;
sont égaux, car I’équation fonctionnelle (2.1) se réduit alors a I’équation
fonctionnelle ¢ (1) = (¢ (¢/y/ n)* déja étudiée au paragraphe précédent.
Dans le cas général, la réponse est encore affirmative, mais elle exige une
démonstration beaucoup plus délicate, fondée sur la théorie des lois limites
de Kolmogorov: cf. [5], Théor. 7.2.1, pag. 161, ou le probléme est géné-
ralisé au cas d’une suite infinie de variables aléatoires (indépendantes et
de méme loi). 1)

3. L’EQUATION FONCTIONNELLE (¢ (1))* = ¢ (t+u) ¢ (t—u) 0 (u).

Le théoréme qui suit est une conséquence immédiate de (1.2). Il nous
servira & démontrer de fagon trés simple le théoréme de Bernstein-Darmois.

(3.1) THEOREME. Soient p une loi de probabilité sur R, ¢ sa fonction
caractéristique. Alors les deux propriétés suivantes sont équivalentes :

1) A signaler que ’énoncé du théoréme de [5] cité ci-dessus est incorrect: en effet,

il,e§t faux si ’on prend a, = « et a; = 0 pour tout i > 2. Pour le rendre correct, il suffit
d’ajouter I'hypotheése: | a; | < | o | pour tout i.
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(a) p est normale ;

(b) il existe un voisinage V de Il’origine dans R et une applzcatlon 0
de V dans C telle que I'on ait

(3.2) (@) = ¢ (t+u) o (t—u) 6 (u)

pour tout couple t,u d’éléments de V.

Démonstration. 11 suffit de démontrer I'implication (b) = (a). Supposons

donc la propriété (b) vérifiée. Quitte a remplacer ¢ par @@, on peut supposer

¢ réelle. L’équation (3.2) fournit alors, pour ¢ = 0, 1 = (¢ ())? 0 (), de
sorte qu’elle peut s’écrire sous la forme équivalente

(@OoeW) =ol+uwe—u).

En particulier, pour ¢ = u = s/2, on trouve (¢ (5/2))4 = @ (s) La
conclusion résulte alors du Théoréme (1.2) pour ¢ = 4,

(3.3) Remarque. Le cas d’'une loi u dégénérée correspond a celui ol
I’équation (3.2) est vérifiée avec une fonction 6 identiquement égale a 1.

4. LE THEOREME DE BERNSTEIN-DARMOIS

Soit (X, X,) un couple de variables aléatoires réelles, de méme loi.
Si le couple (X;+ X,, X;—X,) est formé de variables aléatoires indé-
pendantes, alors la loi commune de X; et de X, est normale: c’est le
théoréme de Bernstein-Darmois sous sa forme primitive. Il fut d’abord
démontré par S. Bernstein [1] avec I’hypothése que la loi commune de X,

et de X, posséde des moments finis jusqu’a I'ordre 4. Plus tard G. Darmois

[2] réussit & généraliser ce résultat, tout en s’affranchissant.de ’hypothése

concernant Pexistence des moments. Il employa a cet effet une technique |

de différences finies, qui lui permit également de démontrer une généralisa-

tion ultérieure, bien plus profonde, connue sous le nom de théoréme de

Skitovitch- Darmo1s (cf. [6]).

Nous présentons ci-dessous le théoréme de Bernstein-Darmois, que nous\

démontrons a l'aide de 1’équation fonctionnelle du paragraphe 3.

(4.1) THEOREME. Soit X un vecteur aléatoire a valeurs dans R?, dont
les composantes X,, X, sont des variables aléatoires indépendantes. Soit
A = (a;;) une matrice réelle (2,2), et supposons que les composantes du
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vecteur aléatoire Y = AX, c’est-a-dire les deux variables aléatoires réelles
Y,, Y, définies par
Yy = ap Xy + aX,
Y, = ay Xy + 032X,
soient elles aussi indépendantes. Alors, pour chaque indice i tel que la i-éme

colonne de A soit formée d’éléments non nuls, la loi de X; est normale
(éventuellement dégénérée). '

Pour rendre plus claire la demonstratlon ‘nous commencerons par
démontrer un lemme préliminaire:

(4.2) LEMME. Soit X un vecteur aléatoire & valeurs dans R?, de com-
posantes X, X,, et soit ® sa fonction caracz‘erzstzque Les deux propriétés
suivantes sont alors équivalentes :

(a) (X, X,) est un couple de variables aléatoires indépendantes ;
15 :

(b) pour tout systéme de scalaires sy, S,, U, v, on a
D (51, 8,) D (s +u, 5, +0) = D (s +u, 5) P (51,52 +v) .

D.émonstration' du lemme.
Il suffit de démontrer (b) = (a). Si I’'on désigne par ¢; la fonction
caractéristique de X;, I’hypothése (b) fournit (pour s; = s, = 0)

®(u,v) = @(u,000(0,%) = ¢, (W (1),

C’est-a-dire I'indépendance du couple (X, X,).

Démonstration du théoréme. Supposons, -pour fixer les idées, que la
premiére colonne de A soit formée d’éléments non nuls, et montrons que
la loi de X, est normale. Quitte 2 multiplier chacune des lignes de 4 par
un scalaire convenable, on pourra supposer

(4.3) v ay; = dy =1.

1) Supposons d’abord que la matrice 4 soit singﬁliére. En vertu de
notre hypothése on a alors Y; = Y,. Par conséquent Y est indépendante
d’elle méme, c’est-a-dire p.s. €gale a une constante:

Y =X, +a,X, =c¢ ps.
il en résulte
Xy =c¢—apX, ps.,
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de sorte que X; est également indépendante d’elle méme, c’est-a-dire p.s.
€gale a une constante.

2) Supposons maintenant que la matrice 4 ne soit pas singuliére, et
désignons par ¢; la fonction caractéristique de X; et par & celle de X:

4.4) = D(t, 1) = @1 (1) @, (tz) .

Désignons en outre par  la fonction caractéristique du vecteur aléatoire
Y = AX, c’est-a-dire la fonctlon définie par

(4.5) Y (51, 8) = P(sy +s,, S1a1z +5,a5,) .

En appliquant le lemme précédent au couple de variables aléatoires indé- /
pendantes (Y, Y,), on trouve, pour tout systéme de scalaires s, s,, u

v (sq, S2) ¥ (sy +u, S —u) = Y (s; +u, So) Y (31; Sy —1U) .
Grace a (4.5), cette relation s’écrit, en fonction de D,
D (51 + 52, S1a15 +52055) P (51 + Sy, 81015 + 5,05, +Ua , —Uay,)
= D (51 +5,+U,S1a15 + 52055 +Ua;,) P (5 + 5, —u, $;a1, + 5205, —ua,,) .

Etant donné le scalaire ¢, choisissons maintenant s,, s, de facon a satisfaire

aux conditions
S1 + S, = t
S1015 + Spa5, = 0

(ce qui est possible, car la matrice 4 n’est pas singuliére). La relation pré-
cédente devient alors

@(t,0)0 (ta u(ag, _022)) =& (t+u,ua;,)d(t—u, ; uazz) 5
Cest-a-dire, grice A (4.4), |
(4.6) @1 () 92 (0) @y (2) @3 (u (ag2 —ay,))
= @y (t+u) @ (uay,) o1 (t—u) @, (—uay,).

Or, si Iul est assez petit, on a @, (u (aj,—ay,)) # 0, de sorte que la
relation precedente peut s’écrire sous la forme |

(4.7) (o1 (t))2 = @1 (t+u) @y (l‘—u) H(u)

Il en résulte, grace a (3.1), que gol est la fonctlon caractéristique d’une loi
normale.
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A titre d’exemple, nous analyserons ’énoncé (4.1) dans deux cas parti-

culiers.
1 0
A= R
(1 1)

Cest-a-dire Y, = X,, Y, = X, + X,. Si chacun des couples (X, X},),
(Y4, Y,) est formé de variables aléatoires indépendantes, le Théoréme (4.1)
permet d’affirmer que la variable aléatoire X; est normale (en revanche,
on ne peut rien affirmer sur X,). On peut d’ailleurs préciser que la variable
aléatoire X, est dégénérée. Il suffit pour cela de remarquer que, dans le cas |
présent, I’équation (4.6) se réduit a la forme (4.7) avec 0 () = 1 (cf. (3.3)). |

a) Supposons d’abord

S S S So

b) Supposons ensuite
cos w —sin
- s )
sin @ CoS
c’est-a-dire Y, = X;cosw — X, sinw, Y, = X, sinw + X, cos w. Si
chacun des couples (X, X,), (Y4, Y,) est formé de variables aléatoires 5
indépendantes, et si @ n’est pas un multiple entier de = | 2, le Théoréme (4.1)
permet d’affirmer que chacune des variables aléatoires X;, X, est normale
(en revanche, si @ est un multiple entier de = / 2, on ne peut rien affirmer,
ni sur X 4 ni sur X,). On reconnaitra ici un résultat ayant des analogies avec
le Théoréme (2.1).
Remarquons enfin que I’énoncé du théoréme de Bernstein-Darmois
tel qu’il figure dans [3] (pag. 77 et pag. 499) est incorrect. En effet il entraine
notamment que, dans les hypothéses du cas particulier a) ci-dessus, la

variable aléatoire X, est normale, ce qui est manifestement faux (il suffit,
pour s’en convaincre, de prendre X, constante et X, non normale).

5. LE THEOREME DE SKITOVITCH-DARMOIS

Voici I'énoncé du théoréme de Skitovitch-Darmois mentionné au para-
graphe précédent:

(5.1) TuEOREME. Soit X un vecteur aléatoire, a valeurs dans R", dont

les composantes X4, ..., X, sont indépendantes. Considérons les deux
variables aléatoires Y., Y, définies par les relations
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Y1 = ale + ens + aan
Y2 = b1X1 + oo + ann

oit les coefficients a;, b; sont des scalaires donnés. Si les variables aléatoires
Y, Y, sont elles mémes indépendantes, alors, pour chaque indice i tel
que a;b; # 0, laloide X; est normale (éventuellement dégénérée).

Ce théoréme est bien plus profond que celui de Bernstein-Darmois
(auquel il se réduit pour n = 2). Il permet en effet de démontrer directement
le théoreme de Cramér-Lévy, ainsi que certains résultats de a-factorisation. )

Il n’est donc pas étonnant que toutes les démonstrations connues du
théoréme de Skitovitch-Darmois fassent appel a des résultats profonds de
la théorie des fonctions caractéristiques analytiques (théoréme de
Marcinkiewicz, théorémes de a-factorisation). Voici en revanche une géné-
ralisation du théoréme de Bernstein-Darmois qu’on peut obtenir par nos
méthodes d’équations fonctionnelles.

(5.1) THEOREME. Soit X un vecteur aléatoire & valeurs dans R" (n= 2),
dont les composantes X 4, ..., X, sont des variables aléatoires indépendantes.
Soit A = (a; j) une matrice réelle (n, n) non singuliére, et supposons que les
composantes du vecteur aléatoire 'Y = AX sont également indépendantes.

Alors, pour chaque indice i tel que la i-éme colonne de A posséde
au moins deux éléments non nuls, la loi de X ; est normale (éventuellement
dégénérée ). '

Pour rendre plus claire la démonstration, nous commencerons par
démontrer un lemme préliminaire:

(5.2) LeMME. Soit X un vecteur aléatoire & valeurs dans R" (n = 2).
dont les composantes X 4, ..., X, (par rapport @ la base canonique (e, ..., e,)
de R") sont des variables aléatoires indépendantes ). Alors la fonction
caractéristique ® de X vérifie la relation

D (s)PD (s +ue, +ve,) = P(s+ue,) D (s +ve,)

pour tout vecteur s de R" et pour tout couple (u,v) de scalaires.

') Voici,par exemple, comment on peut en déduire le théoréme de Cramér-Lévy
(cf. [4], pag. 193). Soit A, w un couple de lois de probabilité sur R, dont le produit de convo-
lution est une loi normale; ‘prenons un' systéme de quatre variables aléatoires indépen-
dantes X, X/, Y, Y’ tel que les lois de X et de X’ coincident avec A et celles de Y et
de Y’ avec p. Les deux variables aléatoires (X + Y) + (X’ + YY), (X + Y)— (X' + Y’
sont alors normales, non correlées; donc indépendantes. En appliquant le théoréme de
Skitovitch-Darmois pour n = 4, on en déduit que chacune des lois 2, o est normale.

®) En fait, il suffirait de supposer que le triplet formé de X, X, et du systéme

(X3, ..., X,) est indépendant.
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Démonstration du lemme. Désignons par ¢; la fonction caractéristique
de X; et par s; la i-éme composante du vecteur s (par rapport a la base
canonique de R"). On a alors

D(s) = @1 (51) @2(52) H @; (s1)

D (s +ue, +'Uez) = @ (31 +u)(P2 (s2 +v) H %(S)

i=3

D (s)+ue;) = @y (514 u) @5 (52) H N EAP

i=3

P (s +vey) = @y (s1) @y (55 +7) | I ®; (s,
i=3
d’ou la conclusion.

Démonstration du théoréme. Supposons que la premiére colonne
de 4 posséde deux éléments non nuls, et montrons que la loi de X, est
normale. On pourra supposer, par exemple, a.; # 0 et a,; # 0. Quitte
a multiplier chacune des deux premiéres lignes de 4 par un scalaire conve-
nable, on pourra méme supposer

(5.3) ' ' a11 = a21 - 1.

Désignons par L I’application lin€aire de R” dans lui- méme dont la matrice,
par rapport a la base canomque de R”, est la transposée de 4. On a donc,
pour tout i,

(5.4) Le, = a,,

ou a; désigne le vecteur (a;, ... a;,).
Désignons en outre par ¢; la fonction caractéristique de X; et par @
celle de X': |

(5.5 D(t,ust) = @1 (ty) e 0, (2,) -

Le vecteur aléatoire ¥ = AX admet alors comme fonction caractéristique
la fonction composée y = ®o L. En lui appliquant le lemme précédent,
on trouve, pour tout scalaire u et pour tout vecteur s de R”,

W (8) Y (s +ue; —ue,) = (s +ue) Y (s—ue,),
c’est-a-dire : |
@ (Ls) P (Ls +ua; —ua,) = ®(Ls +ua,)d (Ls —ua,) .

Etant donné le scalaire ¢, appliquons cette relation au vecteur s déterminé

—
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par Ls = fte; (un tel vecteur existe puisque la matrice de L est réguliere).
On obtient
@ (tei) @ (tel +u (al —_ az)) ‘ - @ (tel +ua1) 45 (tel ‘—ua?_) °

c’est-a-dire, grace a (5.5) et (5.3),
(5.6) o1 () o (1) T1 o (u (ay;—ay,))
i=2 |

=@ (t+uw) [] oi(a) o (t—uw) [] ¢;(—uay) .
i=2 . =13

" Or, si | u| est assez petit, on a ¢; (u (a;;—a,;)) # 0 pour tout i, de sorte

que la relation précédente peut s’écrire sous la forme

(5.7) (01 (D) = @y (t+u) @ (1 —u 0 (u).

Il en résulte, grace a (3.1), que ¢, est la fonction caractéristique d’une loi
normale.

6. RETOUR SUR LES EQUATIONS FONCTIONNELLES
DES PARAGRAPHES PRECEDENTS

Dans létude des équations fonctionnelles des paragraphes précédents,
nous nous étions systématiquement bornés a rechercher les solutions dans
I’ensemble des fonctions caractéristiques. Nous nous proposons maintenant
d’étudier ces mémes équations (ou des équations analogues) dans I’ensemble
‘de toutes les fonctions complexes continues définies dans R.

Nous commencerons par I’équation fonctionnelle *

(6.1) (FOIf@ ) =fE+uw)f—u),

qui se réduit manifestement a I’équation (3.2) dans le cas ou f est une fonc-
tion caractéristique. ‘

!
|
|
g
|

(6.2) THEOREME. Soit f une application contfnue de R dans C, telle

que fO) =1 | .
Alors les deux propriétés suivantes sont équivalentes : ’

(@) f vérifie la relation (6:1) pour tout couple t, u de nombres réels
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(b) il existe deux nombres réels a, b tels que I’on ait
f(t) = exp (at®+ibt)

pour tout nombre réel t.

Nous démontrerons d’abord le lemme suivant:

(6.3) LEMME. Soit H une partie fermée de R possédant les propriétés
suivantes :

(a) O appartient a H;

(b) si t appartient a H, alors —t appartient a H;

(c) 2t appartient a H si et seulement si t appartient a H;
(d) si ¢+ u, t—u appartiennent @ H, alors t appartient a H.

Dans ces conditions on a, soit H = {0}, soit H = R.

Démonstration du Lemme. Supposons que l’ensemble H posséde un
élément ¢, non nul. D’aprés (b), on pourra supposer ¢, positif. En vertu
de (b) et de (¢), il suffira de montrer que H contient l'intervalle [0, #,]. Or
il résulte de (c) que H contient tout nombre de la forme #,/2" avec n = 0.
La propriété (d) entraine alors que H contient aussi tout nombre de la
forme kt, /2" avec 0 < k < 2". Puisque H est fermé, il contient l'inter-
valle [0, t,], ce qui achéve la démonstration du Lemme.

Démonstration du théoréme. 11 suffit de démontrer I'implication (a) = (b).
Supposons donc la propriété (a) vérifiée.

1) Plagons-nous d’abord dans le cas ol la fonction f est réelle et posi-
tive. La relation (6.1) devient alors

(fOSW)* =fE+w)fE—u).

Puisque f est continue et non nulle & I’origine, il existe un nombre réel ¢,
non nul tel que 'on ait f(¢,) > 0. Désignons par « la constante réelle déter-
minée par la condition f(¢,) = exp (at3), et posons, pour tout nombre
réel ¢, '

J(@)
exp (at?)

g@) =

On a alors g (0) = 1,9 (¢,) = 1; en outre la fonction g vérifie la méme
équation fonctionnelle que f:

@M gw) =g@+uwg(t—u).
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- En particulier:

(gW) =gw)g(—u),
(g@®)* =g(1).

Il en résulte que I'ensemble fermé H = {t:g (t) = 1} vérifie les hypo-
théses du Lemme (6.3).Comme d’autre part H contient le nombre réel non
nul ¢,, il coincide avec R, ce qui revient & dire que ’on a f(¢) = exp (at?)
pour tout . |

2) Supposons ensuite | /| = 1. L’équation (6.1) devient alors

(6.4) (FO) = Ft+wft—u).

Puisque la fonction S est continue et qu’elle prend la valeur 1 & T’origine, |
il existe un intervalle ouvert I, centré a l’origine, dans lequel f ne prend
jamais la valeur. — 1. Pour tout €élément ¢ de cet intervalle, désignons parl
0 (¢t) la détermination principale de I’argument de f(¢). La fonction 6 est
alors continue, nulle a T’origine et vérifie ’équation 2 0 (¢) = 6 (¢ +u).
+ 0 (t—u) pour tout couple 7, u de nombres réels tels que ¢ + u et t — u
appartiennent a /.

- En d’autres termes, 6 est une fonction linéaire affine: il existe donc une
constante réelle b telle que ’on ait 6 (¢) = bt (c’est-a-dire £ (¢) = exp (ibt))
pour tout élément ¢ de 1. Si I’on pose \

f(@®)
exp (ibt)’

g(t) =

la fonction g vérifie, elle aussi, ’équation (6.4), donc en particulier ’équa- .
tion (g (¢))® = g (2t). Puisque d’autre part elle est identiquement égale
a 1 sur /, il en résulte qu’elle est ¢gale a 1 partout. En d’autres termes, on a |

f(@) = exp (ibt).

3) Plagons-nous enfin dans le cas général. Puisque f vérifie l’équationf'
fonctionnelle (6.1), il en est de méme de la fonction réelle positive l f | 3
Celle-ci a donc (d’aprés 1)) la forme: l

|

|f@)| = exp (at?).

On peut alors considérer le rapport f/ |/|; Cest une fonction de module
égal a 1, vérifiant la méme équation fonctionnelle que f. Par Conséquent
~ on a, d’apres 2),




Les deux derniéres relations montrent que f a la forme désirée.

Remarque. De fagon plus générale, on peut montrer que, si f est une
application continue de R dans C vérifiant ’équation fonctionnelle (6.1)
(mais non assujettie & la condition £(0) = 1), alors fest, soit identiquement
nulle, soit de la forme

(6.5) f(t) = exp (at*+ibt+ic),

ou a, b, ¢ sont des constantes réelles.

En effet, si Pon suppose £ (0) = 0, I’équation (6.1) (pour # = u) montre
que f est identiquement nulle. Supposons donc f(0) # 0. La méme équation
(pour ¢ = u = 0) fournit alors | £(0)| = 1. Par conséquent la fonction

| £(0) vérifie encore I’équation fonctionnelle (6.1); puisqu’elle prend la
valeur 1 a lorigine, le théoréme précédent entraine qu’elle est de la forme
exp (at*+ibt). Si donc on pose f(0) = exp (ic), on obtient

f(@) = f(0) exp (at? +ibt) = exp (at?+ibt+ic).

On remarquera qu’inversement la fonction (6.5) vérifie I’équation fonc-
tionnelle (6.1) quelles que soient les constantes réelles a, b, c; cependant
elle n’est une fonction caractéristique que dans le cas ou la constante a est
négative et la constante ¢ est un multiple entier de 2 7. '

Occupons-nous a présent des deux autres équations fonctionnelles
rencontrées au paragraphe 1, a savoir '

(6.6) 0 (1) = (p(t/ /O,
(6.7) o) = (o (t/c)F,

ou c¢ est une constante réelle, avec ¢ > 1.
Dans chacune de ces deux équations la fonction inconnue ¢ sera suppo-
sée réelle, paire et strictement positive sur R. En considérant la fonc-

tion f(f) = Log ¢ (\/]¢t]) (resp. f(¢) = Log ¢ (1)), léquation (6.6)
(resp. (6.7)) se réduit a

(6.8) () = of (o).

Dans cette derniére équation la fonction inconnue f est réelle, paire,
nulle a T’origine: il suffit donc de s’intéresser & sa restriction a Iintervalle
10, + oo [. Or, si 'on désigne par I' le graphe de cette restriction, I’équa-
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tion (6.8) exprime le fait que I est invariant par rapport & I’homothétie de
centre 0 et de rapport ¢, c’est-a-dire que I'on a ¢ I' = I'. Pour avoir une

solution, il suffit donc de se donner un graphe arbitraire I, sur I'intervalle

]1,c] et de poser ensuite I' = U ¢" I',. La figure ci-dessous fournit
un exemple.?) . ez |

Il est évident qu’en choisissant convenablement I'y, on peut obtenir des
solutions de classe C* sur ]0, + oo[ et tendant vers 0 & ’origine.

On peut d’ailleurs remarquer que chacune des équations (6.6), (6.7),
(6.8) est de la forme f = hofog~' (ou f est la fonction inconnue). Le
résultat précédent est alors un cas particulier de la proposition suivante:

(6.9) PrOPOSITION. Soient T, U deux ensembles, g une bijection de T
sur lui-méme, h une bijection de U sur lui-méme. Considérons I’équation
fonctionnelle

(6.10) f =hofog™,

ou la fonction inconnue f est une application de T dans U,

Supposons qu’il existe une partie Ty de T telle que (9" (T)) e, cONS-
titue une partition de T. Dans ces conditions, pour toute application fy de T,
dans U, il existe une application unique f de T dans U qui prolonge fo et
qui vérifie I’ equatzon fonctzonnelle (6.10).

Démonstration. Unicité. Soit f une solution de (6.10). On a alors,
pour tout entier n, : ,

f=hofog™

En particulier, si f prolonge f,, on a, pour tout élément ¢ de g" (T,),

1) L’idée de cette construction nous a été suggérée par Ph. Artzner.
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f@) = p [folg™"(1))] -

Puisque (g9" (T 0))nez est une partition de 7, la formule précédente déter-
mine univoquement f sur I’ensemble 7 tout entier.

Existence. Désignons par I'y le graphe de f, et par H la bijection
de T'x U sur lui-méme définie par H (7, u) = (g9 (¢), h (w)). L’ensemble

1_": U Hn(Fo)

nez

est alors le graphe d’une application fde T dans U. Puisque I' contient I, f

prolonge f,. On a en outre H (I') = I, et cette relation montre que f vérifie
I’équation fonctionnelle (6.10).
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