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III. Applications numériques

Le calcul effectif des solutions entières de (1) présente peu d'intérêt, quel

que soit k donné. On observera, cependant, que pour k 2 et k 3, par
exemple, une seule équation (2) fournit toutes les solutions de (1), alors

qu'il en faut deux pour k 5. Ce qui pose la question du nombre d'équations

(2) nécessaire pour résoudre complètement (1), lorsque k n'est pas

un carré.

D'autre part, pour k k'2, on peut trouver des paramétrisations des

solutions de (1), analogues à celle que nous avons rappelée dans Y

Introduction, à savoir

(27) k' (4/i + l)(4/t + 3), x + 3) (2/i +1)2 y

et

(28) k' 4 (2/i +1) (8h2+ 8/j +1) x 16/î(/i + 1)2, y h.

Pour montrer (27), il suffit de poser dans (21)

(29) a a'2 ß(a' + 2)2 b0 h, a0 h + 1,

et il vient a' Ah+ 1. Nous déduisons alors (27) de (14), (29), (26) et (25).

D'autre part, en posant dans (21),

(30) oc (2a' +1)2 ß (Aß1)2cjq 1, +1),

il vient

(31) ce'(a'+1) (2jS')2 h(h + l).
Or, d'après YIntroduction, (31) peut être résolue par

(32) a' 4/i(ft + l), ß' 2h+ 1.

Les formules (28) résultent alors de (14), (30), (32), (26) et (25).

La méthode que nous venons d'exposer s'applique évidemment à

tout k' congru à zéro modulo un entier quelconque. Elle peut aussi servir

à résoudre (1), lorsque k n'est pas un carré.

Nous avons également noté qu'il nous suffisait d'une seule équation de

Pell-Fermat, pour décrire entièrement les solutions de (1), lorsqu'en
particulier k2. Il en a fallu deux à Thouvenot [6]. Mais, que l'on emprunte

une voie ou une autre, l'essentiel est bien d'arriver à Rome, ou à Conakry!
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