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L'ÉQUATION DIOPHANTIENNE

x(x + 1) ky (y + 1)

par Abou-Dardaye Barry

I. Introduction

S. Thouvenot a résolu ici [6], aux notations près, l'équation diophan-
tienne

(1) x(x + l) ky(y +1) (fc 1,2, etc.),

pour k 2, ce que faisait Whitworth, dès 1900 [2]. D'ailleurs, Dickson,
rendant compte d'un résultat dû à Boutin (1895), note dans sa célèbre
Histoire [2], que (1) possède une infinité de solutions dans N, si k n'est

pas un carré, mais seulement un nombre fini de solutions, si k k'2\ en

particulier kf 2 (2h + 1) entraîne x Ah {h + 1), y — h. D'autre part,
Schinzel a établi que (1) n'est vérifiée dans N que par la solution triviale
* y 0, si k p2n (p premier et n entier positif) [7],

Dans cet article, nous faisons retour sur (1), pour en déterminer toutes
les solutions, quel que soit k, grâce aux équations de Pell-Fermat généralisées

(2) p2 - kq2 m

où m dépend de k. Dans une autre partie, nous donnerons un traitement
spécial de la question, lorsque k est carré. Ce que nous résumerons par le
résultat qui suit.

II. Théorème. La résolution dans N de Véquation diophantienne (1)
peut se ramener à celle de l'équation de Pell-Fermat généralisée (2), où
me D (;k), ensemble des diviseurs du facteur libre de tout carré (#1) de

k(k-\).
Deux cas sont possibles :

1°) k non carré

Si (2) possède des solutions entières (en nombre nécessairement infini)
pour un m e D (k), alors toutes les solutions entières correspondantes
de (1) sont contenues dans les formules
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(3) x kq(q+p) j m,- q(kq+p)l
OU

(3') x p(kq-p)l m y q(kq-p)I m

2°) k k'2

Si k 1,(1) est trivialement satisfaite dans N par x y.
Si k ^ \, (X) a un nombre fini de solutions dans N, déterminées par

(2), (3) ou (3'), ou encore, de façon équivalente et à une permutation près
de oc et fi,

(4) x oca — 1 ou fib, y (c — 1) / 2,
où

ccfi k k'2, oca — fib 1 et 4ab + 1 c2 (c e«t/er impair).

Inversement, étawt donné des entiers naturels x, j quelconques, définis

par (2), (3) öw (3'), ow encore (4), / équation (1) e^t satisfaite pour ces
éléments de N.

Preuve. Partons du résultat élémentaire suivant, qui date de Diophante
au moins [4]: 8 fois un nombre triangulaire augmenté de 1 est un carré.
En effet

(5) 8 • x (x +1) / 2 + 1 (2x +1)2

Ceci posé, mettons (1) sous la forme équivalente

8 • x (x +1) / 2 + 1 4ky (y +1) + 1

ou, par (5),

(6) (2x +1)2 (2ky +1)2 - /c (/c — 1) (2j;)2

Pour k 1, (6) implique x y, donc (1) est trivialement satisfaite
dans N. Inversèment, si x y ^ 0 (l'hypothèse x 0, ou y 0 étant
sans intérêt, puisque, quel que soit k, x 0 équivaut à y 0), il est évident

que k — 1.

Supposons donc désormais k ^ 1

Dans ce cas, la décomposition en facteurs premiers de k (k — 1) permet
de poser '

(7) k (k — 1) h2 mn

les facteurs carrés de k (k — 1) étant regroupés dans h2, et mn libre de tout
carré (square-free), ce qui implique en particulier (m, n) 1.



Tout le problème se ramène alors à la résolution dans N de l'équation

diophantienne

(8) (2fcj/+l)2 — mn(2hy)2 (2x + l)2

Pour cela, nous envisagerons deux cas:

1) mn pair

Il est alors nécessaire et suffisant de poser [3]:

2ky -f 1 + 2hy ^Jlnn X(r^Jm±qh^n)2

ou, y étant positif,

(9) 2ky + 1 X(mr2 + nq2h2) y Xrq

où r et q sont des entiers positifs tels que (r, qh) 1 et X un entier positif
quelconque.

Mais X, qui doit diviser à la fois y et 2ky + 1, est nécessairement égal

à 1. Donc, (9) équivaut à

(10) mr2 — 2kqr + nq2 h2 — 1 0

Par suite, r de (10) sera un entier positif si et seulement s'il existe un
entier positif, p, premier avec q, tel que

k2 q2 — m (nq2h2 — 1) p2

i.e.

(k2 —h2mn) q2 + m p2

ou, compte tenu de (7), la relation annoncée

(2) p2 — kq2 m

2) mn impair

Il s'ensuit aussitôt que m et n sont tous deux impairs. D'autre part, (8)
est réalisée dans ce cas dans N si et seulement si [3] :

2ky + 1 + 2hy ^jmn (1/2) X {r^Jm +qh^Jn)2

c'est-à-dire

(11) 2ky + 1 (1/2) X (mr2 + nq2h2)-, y (1/2) Xrq

où r et q sont des entiers positifs vérifiant (r, qh) 1, et X un entier positif
quelconque.
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Mais, comme met nsontimpairs, il résulte de (7) que h est pair. En
outre, restimpair, puisque (r, qh) 1, et il en est donc de même de

mr2+ nq2h2.Par suite, il est nécessaire de supposer pair. En effectuant
ainsi lâ substitution Ar> 2Adans (11), et en posant (ce qui est nécessaire,

comme précédemment), l'on est ramené au cas mn pair.
Occupons-nous à présent de résoudre effectivement (1) en entiers positifs.

Tout d'abord, de (10) l'on tire

(12) r=(kq±p)/m.
De plus, si l'on substitue dans (8) les égalités (9), avec 1, il vient,

compte tenu de (2),

(?') (1 + 2 kq( q+p)jm)2 (2x +1)2.

Ainsi, (8'), (9) (avec A1) et la forme

(12') r
de(12) donnent

(13) x kq(q+p)/m, y q(kq+p)l m.
Comme, d'autre part, q<p(sinon(2) serait impossible), (8'), (9)

(où A1) et

(12") r (kq/ m

conduisent à la seconde classe de solutions

(13') x=p(kq-p)fm,y=q(kq-p)/m.

(Il va de soi que kq —p>0, sinon nous aurions, ou — 0, ce
qui est évidemment impossible, ou m> 1(1- 1), ce qui "n'est pas non
plus.)

Pour préciser les résultats ainsi obtenus, il est nécessaire d'étudier de
plus près (2). Les deux cas suivants y suffiront.

1) k non carré

Si m1, (2) n'est autre que l'équation de Pell-Fermat [5]. Elle admet
une infinité de solutions dans N, et il en est donc de même de (1), dont les
solutions sont définies par (13) ou (13').

Si m # 1, (2) n'a en général pas de solutions dans N, comme le montre
la théorie des corps quadratiques [8], ou celles des fractions continues [5].
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Il reste maintenant à examiner si (13) et (13') définissent effectivement

des nombres entiers.

Observons tout d'abord que r, donné par (12') et (12"), est un entier.

Et comme, d'autre part, (13) et (13') peuvent s'écrire respectivement

k(k~V 2x kqr — q y qr et x pr y qr
m

il est évident que x et y sont entiers, puisque m divise k (k — 1), par
définition.

2) k carré

Posons k k'2.
Si m 1, (2) admet pour toute solution entière p — 1, q 0, et il en

résulte x y 0.

Si m ^ 1, les solutions de (2) sont à chercher dans Q+. En effet, pour
m m1m2 (m2 < ml9 par exemple et ml9 m2 entiers), l'équation (2) se

réduit au système

p + k' q m1 p — k' q m2

et nous en tirons

(S) p (ml + m2) l 2 q (m1 — m2) / 2k'

Mais (S) définit en règle générale p et q dans Q+. (Exemple: k' 6,
m 5, m1 5, m2 1 donnent de (S) la forme p 3, q 1/3.) Donc
le nombre de solutions de (1) est au plus égal au nombre de factorisations
de m en deux facteurs, i.e. fini. Par exemple, comme k' 6 et m 5

entraînent p 3, q 1/3, il vient, par (13), x 8, j 1, solution que
l'on retrouve, pour m 7, si l'on utilise (137).

Nous pouvons, cependant, résoudre (1) entièrement dans N, sans le
relais des rationnels. En effet, posons

(14) k k'2 aß.

Alors, à une permutation près de a et ß9 nous pouvons supposer que
oc et ß divisent respectivement x + 1 et x, ou

(15) x + 1 aa x ßb

c'est-à-dire

(16) aa - ßb 1,
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où a et b sont des entiers positifs (premiers entre eux) à déterminer, et

a et ß des carrés, puisqu'ils sont premiers entre eux et que leur produit est

un carré.

Avec ces transformations, (1) se réduit à

ab y (y +1)
donc

(17) 4ab + 1 (2y +1)2

ce qui définira un y de N si et seulement si 4ab + 1 est un carré, i.e. s'il
existe un entier impair positif c tel que

(18) 4ab + 1 — c2

De (17) et (18), l'on déduit alors

(19) y (c -1) / 2

Ainsi se trouve résolue, entièrement dans N, l'équation (1), lorsque k
est un carré.

Cette même méthode permet d'ailleurs, de montrer que le nombre de

solutions de (1) est fini, lorsque k k'2 # 1.

En effet, la résolution de l'équation diophantienne (16) donne

(20) a ßt + a0 b eut + b0 (teN),

où

(21) cca0 - ßb0 1

et •

a0 < ßy b'o < a [1]

D'autre part, compte tenu de (20), (18) devient, par des transformations

élémentaires,

(22) (2ocßt + oca0 +ßb0)2 +: aj8(4a0b0'+1) - (oca0 +ßb0)2 aße2

Or, l'élévation au carré de (21) ramène (22) à

(23) (2ocßt + Gta0 + ßbo)2 + etß — 1 u2

où u2 aßc2 (aß étant un carré.)
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Dès lors, la factorisation aß —1 — ßu où ay et sont de même

parité et vérifient, par exemple, ßx <auréduit (23) au système

u+ (2aßt + aa0+ßb0)cq u— ßi •

Il en résulte

(24) laßt + aa0 + ßb0 (ax -ßt)

Or, les couples (außi)étant en nombre fini, il en est de même des entiers

t de (24). Donc, le nombre de solutions de (1) est bien fini, lorsque

Celles-ci, qui doivent correspondre aux 0, sont définies, compte tenu

de (15), (18) et (19), par

(25) x aa-1 ou ßb, yh,où

(26) ab h (h+1).

Dans les applications numériques, on utilisera successivement (20),

(24), (26) et (25).

Inversement, supposons donnés des entiers positifs x, y vérifiant (13),

où pet qsont définis par (2). Alors, (1) est satisfaite dans N.

En effet, si kA 1 (le problème étant trivial dans l'hypothèse contraire),

(2) implique
k2 q2 + mk + p2 —kq2 + m

D'où, en multipliant les deux membres de cette égalité par q et en leur

ajoutant ensuite 2 kq2p+ mp, nous tirons

(q +p)(kq (q+p) + m) (kq (q (kq + m)

Mais ce résultat n'est autre que (1), puisque, par (13),

kq(q+p)l m x q(kq+p)l m y

Le problème se résout tout aussi simplement, si nous partons de (13').
Et si maintenant x et y sont définis par (25), il est évident que x (x -1- 1)

aß ab, et (1) résulte alors de (26) et (14).

Ainsi, notre théorème est entièrement établi.

Il ne nous reste plus qu'à dire un mot sur les applications numériques.
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