Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: L'EQUATION DIOPHANTIENNE x(x+1) = ky(y+1)
Autor: Barry, Abou-Dardaye

Kapitel: I. Introduction

DOI: https://doi.org/10.5169/seals-50370

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-50370
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’EQUATION DIOPHANTIENNE
kD) =ky( + 1)
par Abou-Dardaye BARRY

I. INTRODUCTION

S. Thouvenot a résolu ici [6], aux notations prés, 'équation diophan-
tienne

(1D x(x+1) =ky(y+1) (k = 1,2, etc),

pour k = 2, ce que faisait Whitworth, dés 1900 [2]. D’ailleurs, Dickson,
rendant compte d’un résultat dii & Boutin (1895), note dans sa célébre
Histoire [2], que (1) posséde une infinité de solutions dans N, si k n’est
pas un carré, mais seulement un nombre fini de solutions, si £k = k’'?; en
particulier ¥ = 2 (2h + 1) entraine x = 4k (h + 1), y = h. D’autre part,
Schinzel a établi que (1) n’est vérifiée dans N que par la solution triviale
x =y =0,si k = p* (p premier et n entier positif) [7].

Dans cet article, nous faisons retour sur (1), pour en déterminer foutes
les solutions, quel que soit k, grace aux équations de Pell-Fermat généra-
lisées |
(2) p* —kq*> = m,

ou m dépend de k. Dans une autre partie, nous donnerons un traitement
spécial de la question, lorsque k est carré. Ce que nous résumerons par le
résultat qui suit. '

II. THEOREME. La résolution dans N de I’équation diophantienne (1)
peut se ramener a celle de I’équation de Pell-Fermat généralisée (2), ou
me D (k), ensemble des diviseurs du facteur libre de tout carré (#£1) de
k (k—1).

Deux cas sont possibles :

1°) k non carré

St (2) posséde des solutions entiéres (en nombre nécessairement infini)
pour un  me D (k), alors toutes les solutions entiéres correspondantes
de (1) sont contenues dans les formules

e e st s ey et b ey




— 24 —

3  x=ke@4p)/m, y = alkq+p)m,

ou o .

(3" - ox = p(kq+p)/m_, y =q(kg—p)/m.
20k = k'? |

Si k = 1, (1) est trivialement satisfaite dans N par x = y. o
Si k # 1, (1) a un nombre fini de solutions dans N, déterminées par

(2), (3) ou (3 "), ou encore, de fag:on équivalente et d une permutation prés
de o et P, ,
(4) x =oa—1oufb, y=(c-1))/2,
ol |
of =k =k'*, aa—Bb =1 et dab + 1 = ¢* (c entier impair).
Inversement, étant donné des entiers naturels x, y- quelconques, définis
par (2), 3) ou (3'), ou encore (4), [ équation (1) est satisfaite pour ces
éléments de N.

Preuve. Partons du résultat élémentaire suivant, qui date de Diophante

au moins [4]: 8 fois un nombre triangulaire augmenté de 1 est un carré.
En effet

(5 ‘ 8-x(x+1)/2+1 =(2x+1)>.
Ceci posé, mettons (1) sous la forme équivalente

8-x(x+1)/2+1 =4ky(y+1) + 1,
ou, par (5),
(6) B (2x-+1)2 (2ky—k1)24— k(k 1)(2y)2

Pour. £k = 1, (6) implique x = p, donc (1) est tr1v1alement sat1sfa1te

dans N. Inversément, si x = y # 0 (’hypothése x = 0, ou y = 0 étant

sans 1nteret pulsque quel que 501tk x = 0 equlvauta y = 0) il est évident -

que k =

Supposons donc desormazs k |

Dans ce cas, la decomposmon en facteurs premlers de k (k — 1) permet

de poser | .
7 . k(k 1)—h2mn

les facteurs carres de k£ (k — 1) étant regroupes dans A2, et mn 11bre de tout
carré (square-free), ce qui implique en particulier (m, n) =

3 o
T W S LRy S R .
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Tout le probléme sé raméne alors a la résolution dans N de 1’équation
diophantienne |
(8) (2ky +1)> — mn (2hy)* = 2x +1)*.
Pour cela, nous envisagerons deux cas:

1) mn pair

Il est alors nécessaire et suffisant de poser [3]: |
2ky + 1 4 2hy \/ mn = A(rym+qh/n)*,
ou, y étant pésitif, |
(9) 2ky + 1 = A(mr* +nqg*h?), y = irq,

ol r et ¢ sont des entiers positifs tels que (r, gh) = 1 et A un entier positif
quelconque. - - |

Mais A, qui doit diviser a la fois y et 2ky + 1, est nécessairement égal
a 1. Donc, (9) équivaut a

(10) - mr? —2kqr + ng*h* —1 = 0.

Par suite, » de (10) sera un entier positif si et seulement s’il existe un
entier positif, p, premier avec g, tel que

k*q* — m(ng’h* —1) = p?,
i.e.
(k* —h*mn)q*> + m = p?,
ou, compte tenu de (7), la relation annoncée
(2) p* —kq® = m.
2) mn impair

Il s’ensuit aussitot que m et n sont tous deux impairs. D’autre part, (8)
est réalisée dans ce cas dans N si et seulement si [3]:

2ky + 1 + 2hy \/W = (1/2)i(r\/ﬁ¢_+qh\/h‘)2 N
c’est-a-dire

(1) 2ky +1 = (U2 A(mr +ng?h2),  y = (1/2) Arq,

ol r et g sont des entiers positifs vérifiant (r, gh) = 1, et A un entier positif
quelconque. ' |
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Mais, comme m et n sont impairs, il résulte de (7) que A est pair. En
outre, . r est impair, puisque (r, gh) = 1, et il en est donc de méme de
mr? + ng? h?. Par suite, il est nécessaire de supposer A pair. En effectuant
ainsi la substitution A > 21 dans (11), et en posant A = 1 (ce qui est néces-
saire, comme précédemment), I’on est ramené au cas mn pair.

Occupons-nous a présent de résoudre effectivement (1) en entiers positifs.
Tout d’abord, de (10) I’on tire

(12) - r=(kqtp)/m.

De plus, si I'on substitue dans (8) les égalités 9), avec 1 = 1, il Vlent
compte tenu de (2),

() (1+2kq (g £p)/m)* = (2x +1)2,
Ainsi, (8), (9) (avec 4 = 1) et la forme | |
(12) r = (kq+p)/m

de (12) donnent-

(13) x =kq(q+p)/nmi,y =qlkq+p)/m.

Comme, d’autre part, ¢ < p (sinon (2) serait impossible), (8"), (9)
(oud =1)et

(127) ' r =(kq—p)/m
conduisent a la seconde classe de solutions
(13") x=pkq—p)/m, y=gqkq—p)/m.

(Il va de soi que kg — p > 0, sinon nous aurions, ou kq —p =0, ce

qui est évidemment impossible, ou m > k (k — 1), ce qui n’est pas non -

plus.)
Pour préciser les résultats ainsi obtenus, il est necessalre d’étudier de

plus pres (2). Les deux cas suivants y suffiront.

l) k non carré

Sim = 1, (2) n’est autre que I’équation de Pell-Fermat [5]. Elle admet
une infinité de solutions dans N, et il en est donc de méme de (1), dont les
solutions sont définies par (13) ou (13). |

Sim # 1, (2) n’a en général pas de solutions dans N, comme le montre

la théorie des corps quadratiques [8], ou celles des fractions continues [5].

i
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Il reste maintenant a examiner si (13) et (13") définissent effectivement

des nombres entiers.
Observons tout d’abord que r, donné par (12°) et (12”), est un entier.
Et comme, d’autre part, (13) et (13’) peuvent s’écrire respectivement

k(k—1)
———y
m

x = kqr — 2

, Yy =qr et x =pr,y =4gr,
il est évident que x et y sont entiers, puisque m divise k (k — 1), par défi-
nition. :

2) k carré

Posons k = k'2.

Sim = 1, (2) admet pour toute solution enti¢re p = 1, g = 0, et il en
résulte x = y = 0. ' A

Si m # 1, les solutions de (2) sont & chercher dans Q7. En effet, pour
m = m; m, (m, < my, par exemple et my, m, entiers), I’équation (2) se
réduit au systéme

p+kqg=m,p—-klq=m,,
et nous en tirons

(S) p=(m+my)/2, q =(m—m,)[2k".

Mais (S) définit en régle générale p et ¢ dans Q*. (Exemple: k' = 6,
m = 5,m; = 5, my, = 1donnent de (S) la formep = 3, g = 1/3.) Donc
le nombre de solutions de (1) est au plus égal au nombre de factorisations
de m en deux facteurs, i.e. fini. Par exemple, comme k' = 6 et m = 5
entrainent p = 3, ¢ = 1/3, il vient, par (13), x = 8, y = 1, solution que
’on retrouve, pour m = 7, si ’on utilise (13').

Nous pouvons, cependant, résoudre (1) entiérement dans N, sans le
relais des rationnels. En effet, posons

(14) k=k?=af.

Alors, 4 une permutation prés de o et f§, nous pouvons supposer que
o et B divisent respectivement x + 1 et x, ou

(15) x+1=oaa, x =pb,
c’est-a-dire

(16) oa —pb =1,
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ol a et b sont des entiers positifs (premiers entre eux) a déterminer, et

o et B des carrés, puisqu’ils sont premiers entre eux et que leur prodult est

un carré.
Avec ces transformations, (1) se réduit &

ab = y(y+1),
donc -

a7n “dab + 1 = 2y +1)?,

ce qui définira un y de N si et seulement si 4ab + 1 est un carré, i.e. s’il
existe un entier impair positif ¢ tel que |

(18) -~ 4ab +1 = c*.
De (17) et (18), I’on déduit alors

(19  y=(e-DJ2.

Ainsi se trouve résolue, entiérement dans N, ’équation (1), lorsque &
est un carré. ,

Cette méme méthode permet d’ailleurs, de montrer que le nombre de
solutions de (1) est fini, lorsque k = k'? # 1. o

En effet, la résolution de ’équation diophantienne (16) donne

20) a =Pt +ag, b = at +by (teN),
ou | i . o | -
ey aa, — by = 1, .

et | : S ‘ 1
| | a, < B, by < afl]..

Drautre part, compte tenu de (20) (18) devient, par des transformatlons )

elementalres

(22) (20t +0aq +ﬁb0)2 + of (4a0b0 +1) — (ocao +[3b0)2 ‘ocﬁc‘?‘ .
Or, I’élévation au carré de (21) ramene (22) a N

(23)" o (2fxﬁt+oca0 +/3b0) + ocﬁ —1=u?

ou u? = ocﬁc (ocﬁ etant un carré.) -
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Dés lors, la factorisation aff — 1 = a; f;, ou ay et B, sont de méme
parité et vérifient, par exemple, f; < dy, réduit (23) au systeme

u 4+ (2aft +oag -F,Bbo) = oy, u — (2ot +aay +Pbo) = By -
Il en résulte |
(29) 20t + aag + by = (4 —f) 2.

Or, les couples (a4, ;) étant en nombre fini, il en est de méme des entiers
t de (24). Donc, le nombre de solutions de (1) est bien fini, lorsque £ = k'
Celles-ci, qui doivent correspondre aux ¢ > 0, sont définies, compte tenu
de (15), (18) et (19), par |

(25) x =o0a—1oupb,y=nh,
ol
(26) | ab = h(h+1).

Dans les applications numériques, on utilisera successivement (20),
(24), (26) et (25). |

Inversement, supposons donnés des entiers positifs x, y vérifiant (13),
ou p et g sont définis par (2). Alors, (1) est satisfaite dans N.
En effet, si k # 1 (le probléme étant trivial dans ’hypothése contraire),
(2) implique
k% g®> + mk + p* = kq* + kp* + m.

D’ou, en multipliant les deux membres de cette égalité par ¢ et en leur
ajoutant ensuite 2kq?p + mp, nous tirons

(g +p) (kq(q +p)+m) = (kq +p)(q(kq +p)+m).

Mais ce résultat n’est autre que (1), puisque, par (13),

kq(@+p)/m =x, q(kq+p)/m = y.

“Le probléme se résout tout aussi simplement, si nous partons de (13).
Et si maintenant x et y sont définis par (25), il est évident que x (x + 1)
= off ab, et (1) résulte alors de (26) et (14). |
Ainsi, notre théoréme est entiérement établi.
Il ne nous reste plus qu’a dire un mot sur les appliéations numériques.
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