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tät einer Borel-meßbaren Funktion u > 0 auf X durch die zur Definition
äquivalente Bedingung

(35) sup X VÀu — u
x> o

für die Resolvente nachweisen.

Dies hat zur Folge, daß der explizite Gebrauch der Halbgruppe oft
unnötig und Sätze gleich in der Sprache der Resolventen formuliert und
bewiesen werden können. Häufig wird hierdurch größere Allgemeinheit
erzielt, nämlich dann, wenn keine zugehörige Halbgruppe existiert. Ein
Beispiel sind die Sätze von Mokobodzki des letzten Abschnitts, welche in
[25], [26] gleich in der Sprache der Resolventen formuliert werden. Auch
die Untersuchungen von Cornea-Licea [14] sind in diesem Licht zu sehen.

Resolventen treten auch bei hyperbolischen linearen Differentialgleichungen

zweiter Ordnung auf — allerdings muß man dabei auf die
Positivität der Kerne verzichten. Ritter [27] (vgl. auch [16]) hat nämlich
gezeigt, daß für große Klassen solcher Differentialgleichungen der durch
die Fundamentallösung definierte Kern in eine Resolvente reeller Kerne
aufgelöst werden kann. Hierdurch dürfte es möglich werden,
potentialtheoretische Methoden auch in das Gebiet der hyperbolischen Differentialgleichungen

eindringen zu lassen. Das Gebiet der parabolischen Differentialgleichungen

wurde potentialtheoretischen Methoden bereits durch den
allgemeinen Begriff des harmonischen Raumes erschlossen (vgl. [1] und
[13]).
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