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Dabei bezeichnet 1, die Indikatorfunktion einer Menge A; die linke
Seite der Ungleichung (31) ist das Lebesgue-Mall der Menge

{yeR:D*u(y) >oa} n [x, + o [.

,,Fast tberall“ heiBt stets bis auf eine Borel-Menge 4 vom Lebesgue-
MalB Null. Hiermit dquivalent ist aber die Forderung

(32) V1,(x) = 0 ~ fiir alle x €R.

Interpretiert man in den Aussagen 1 und 2 fast iiberall im Sinne von
(32), so bekommen die Aussagen 1—3 einen Sinn fiir beliebige Halbgruppen
(P,);>o von Kernen auf einem MeBraum.

Es ist hochst bemerkenswert, daB die Aussagen 1—3 nahezu ohne
Zusatzbedingungen fir sub-Markovsche Halbgruppen (P,),», auf einem
MefBraum von MOKOBODZKI [25], [26] bewiesen werden konnten. Man muf
eigentlich nur voraussetzen, da3 die o-Algebra des MeBraumes von den
exzessiven Funktionen der Halbgruppe erzeugt wird. Dies ist in unserem
eingangs gewéhlten Beispiel der Fall.

6. AUSBLICK: RESOLVENTEN IN DER POTENTIALTHEORIE
Hiufig — ein typisches Beispiel hierfiir ist der Beweis des Satzes 2.1 —

gelangt man zu einer Halbgruppe (P,);-, von Kernen nur auf dem Umweg
iiber deren Resolvente (V) ;>0, Wobei V', den Kern,

8

(33) V,=[e*Pdt,

o

also die Laplace-Transformierte von (P,),s, bezeichnet. Es ist der Satz
von Hille-Yosida, der von einer Resolvente, d.h. genauer von einer der
Resolventengleichung

(34 V,=V,+4-wV,V, =20 (A, u > 0)

geniigenden Familie (V),-, von Kernen zu einer zugehdrigen, unter
geeigneten Zusatzvoraussetzungen eindeutig bestimmten Halbgruppe
(P,);>o von Kernen fiithrt. (Vgl. MEYER [24].)

AuBerdem ist es selbst bei gegebener Halbgruppe (P,),>, oft nur auf
dem Umweg iiber die Resolvente moglich, gewisse Eigenschaften nach-
‘zuweisen. Ist belsplelswelse (P,),>o eine Fellersche Halbgruppe auf einem
lokal-kompakten Raum X mit abzdhlbarer Basis, so 148t sich die Exzessivi-

‘
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tit einer Borel-meBbaren Funktion u > 0 auf X durch die zur Definition
dquivalente Bedingung \

(35) | sup A V,u =u
- A>0
fiir die Resolvente nachweisen.

Dies hat zur Folge, daB der explizite Gebrauch der Halbgruppe oft
unndtig und Sétze gleich in der Sprache der Resolventen formuliert und
bewiesen werden konnen. Héufig wird hierdurch groBere Allgemeinheit
erzielt, ndmlich dann, wenn keine zugehorige Halbgruppe existiert. Ein
Beispiel sind die Sdtze von MOKOBODZKI des letzten Abschnitts, welche in
[25], [26] gleich in der Sprache der Resolventen formuliert werden. Auch
die Untersuchungen von CORNEA-LICEA [14] sind in diesem Licht zu sehen.

Resolventen treten auch bei hyperbolischen linearen Differential-
gleichungen zweiter Ordnung auf — allerdings mu3 man dabei auf die
Positivitit der Kerne verzichten. RITTER [27] (vgl. auch [16]) hat nidmlich
gezeigt, daB fiir groBe Klassen solcher Differentialgleichungen der durch
die Fundamentallosung definierte Kern in eine Resolvente reeller Kerne
aufgelost werden kann. Hierdurch diirfte es mdglich werden, potential-
theoretische Methoden auch in das Gebiet der hyperbolischen Differential-
gleichungen eindringen zu lassen. Das Gebiet der parabolischen Differential-
gleichungen wurde potentialtheoretischen Methoden bereits durch den
allgemeinen Begriff des harmonischen Raumes erschlossen (vgl. [1] und

[13]).
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