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Dabei bezeichnet lA die Indikatorfunktion einer Menge A; die linke
Seite der Ungleichung (31) ist das Lebesgue-Maß der Menge

{y gR: D* u(y) > a} n [x, + oo [.

„Fast überall" heißt stets bis auf eine Borel-Menge A vom Lebesgue-
Maß Null. Hiermit äquivalent ist aber die Forderung

(32) VlA(x) 0 für alle x eR.

Interpretiert man in den Aussagen 1 und 2 fast überall im Sinne von
(32), so bekommen die Aussagen 1—3 einen Sinn für beliebige Halbgruppen
(Pt)t>o von Kernen auf einem Meßraum.

Es ist höchst bemerkenswert, daß die Aussagen 1—3 nahezu ohne

Zusatzbedingungen für sub-Markovsche Halbgruppen (Pt)t>o au^ einem

Meßraum von Mokobodzki [25], [26] bewiesen werden konnten. Man muß

eigentlich nur voraussetzen, daß die cr-Algebra des Meßraumes von den

exzessiven Funktionen der Halbgruppe erzeugt wird. Dies ist in unserem

eingangs gewählten Beispiel der Fall.

6. Ausblick: Resolventen in der Potentialtheorie

Häufig — ein typisches Beispiel hierfür ist der Beweis des Satzes 2.1 —
gelangt man zu einer Halbgruppe (Pt)t>0 von Kernen nur auf dem Umweg
über deren Resolvente (Vf)x>0, wobei Vx den Kern,

00

(33) Vx \e~xt ?tdt,
0

also die Laplace-Transformierte von (Pt)t>o bezeichnet. Es ist der Satz

von Hille-Yosida, der von einer Resolvente, d.h. genauer von einer der

Resolventengleichung

(34) Vx- Vß + (2-ix) Vk 0 (2, n > 0)

genügenden Familie (VÄ)Ä>0 von Kernen zu einer zugehörigen, unter

geeigneten Zusatzvoraussetzungen eindeutig bestimmten Halbgruppe

(Pt)t> o von Kernen führt. (Vgl. Meyer [24].)

Außerdem ist es selbst bei gegebener Halbgruppe (Pt)t>o oft nur auf
dem Umweg über die Resolvente möglich, gewisse Eigenschaften
nachzuweisen. Ist beispielsweise (Pt)t>o eine Fellersche Halbgruppe auf einem

lokal-kompakten Raum X mit abzählbarer Basis, so läßt sich die Exzessivi-
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tät einer Borel-meßbaren Funktion u > 0 auf X durch die zur Definition
äquivalente Bedingung

(35) sup X VÀu — u
x> o

für die Resolvente nachweisen.

Dies hat zur Folge, daß der explizite Gebrauch der Halbgruppe oft
unnötig und Sätze gleich in der Sprache der Resolventen formuliert und
bewiesen werden können. Häufig wird hierdurch größere Allgemeinheit
erzielt, nämlich dann, wenn keine zugehörige Halbgruppe existiert. Ein
Beispiel sind die Sätze von Mokobodzki des letzten Abschnitts, welche in
[25], [26] gleich in der Sprache der Resolventen formuliert werden. Auch
die Untersuchungen von Cornea-Licea [14] sind in diesem Licht zu sehen.

Resolventen treten auch bei hyperbolischen linearen Differentialgleichungen

zweiter Ordnung auf — allerdings muß man dabei auf die
Positivität der Kerne verzichten. Ritter [27] (vgl. auch [16]) hat nämlich
gezeigt, daß für große Klassen solcher Differentialgleichungen der durch
die Fundamentallösung definierte Kern in eine Resolvente reeller Kerne
aufgelöst werden kann. Hierdurch dürfte es möglich werden,
potentialtheoretische Methoden auch in das Gebiet der hyperbolischen Differentialgleichungen

eindringen zu lassen. Das Gebiet der parabolischen Differentialgleichungen

wurde potentialtheoretischen Methoden bereits durch den
allgemeinen Begriff des harmonischen Raumes erschlossen (vgl. [1] und
[13]).
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