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als hinreichend dafiir erkannt daB (25) fiir jedes ¢ > 0 gilt und p¥ fiir
jedes 4 > 0 in T*\{0} stetig und reell ist. Auf diese Weise erhielt BERG [5],
[6] den Satz: : :

4.1 Erfiillt eine Folge of = (a)yn positiver reeller Zahlen die Bedin-
gung (27), so existiert auf T fiir jedes ) > 0 ein translationsinvariantes,
symmetrisches Garbendatum %, fiir welches (T, # ) ein strenger

Brelot-Raum und p%, ein strikt positives, in T*\{0} harmonisches Potentialist.

Damit hat man mittels Produktbildung eine ganze Schar harmonischer
Strukturen #% auf dem unendlich-dimensionalen Torus konstruiert. |
Jede dieser Strukturen kann durch den linearen ,, Differentialoperator

(o) 62
(28) : L"“'—Zak — — A-id
007
beschrieben werden. Bezeichnet nédmlich n,: T — T? die kanonische
Projektion von T auf den p-dimensionalen Torus 77 der erstenp = 1,2,... |
Koordinaten, so liegen alle Funktionen fo n, mit fe C*(T?) im Defini- |
tionsbereich des infinitesimalen Erzeugers LY von (u¥),., und es gilt
p 62 f | |

LJ;..{ (fOTCp) = Z ay

— — Af.
& o ~ Y

Mit distributionstheoretischen Methoden kann man, ausgehend von
(28), das Garbendatum #°% direkt beschreiben: Es bezeichne hierzu @ (2)
fiir offenes Q = T'” die Menge aller Funktionen fon, mit pe N und
fe C®(T?), deren Trager in Q enthalten ist. Dann gilt

HT(Q) ={heC(Q): th gdd =0 firallege2(Q)}.

Dabei kann man sogar A = 0 zulassen. Allerdings ist der dann entstehende |
Brelot-Raum nicht mehr streng. Dieser Zugang findet sich ebenfalls bei
BERG [5]. Analoge Resultate wurden von BENDIKOV [4] mit Methoden der
Theorie der Markov-Prozesse erzielt.

5. BEZIEHUNGEN ZUR DIFFERENTIATIONSTHEORIE
Uber die Theorie der harmonischen Riume hinaus werden der Poten-

tialtheorie durch die Betrachtung von Halbgruppen von Kernen neue
Dimensionen erdffnet. Dies soll nun noch kurz skizziert werden. |
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Eme der einfachsten Faltungshalbgruppen. auf R ist die’ Halbgruppe
(- ;>0 der Einheitsmassen in —¢. Die zugehorlgen Kerne P, operieren
wie folgt

Pf (x) = f(x+1).
Der durch Integration entstehende (Potential-) Kern ¥ hat also die Gestalt

VI = [PS0di = § 10 d.

Die supermedian genannten Funktionen bezﬁglich' einer Halbgruppe
(P)>0, d.h. diejenigen Borel-meBbaren Funktionen f > 0 mit

Pf<f - fir 'alle t >0,

sind im Falle dieser speziellen Halbgruppe gerade die monoton fallenden
Funktionen f > 0 auf R. Fiir Lebesgue-integrierbares f auf R ist Vf absolut
stetlg und lim Vf(x) = 0. Setzen wir noch

x>+ o0
fPf
t

(t > 0)

und '
Df = lim sup D,f,

t—0

so erhdlt man aus den klassischen Differentiationssitzen der Lebesgue-
schen Theorie:

1. Fiir jede supermediane Funktion u existiert der reelle Limes

(29) Du = 1lim D, u fast iiberall.

t—>0’

2. Fiir jede Borel-meBbare Funktlon S =0 auf R mit Vf (X) < +
fiir alle x e R gilt

(30) DVf = f fast iiberall.

Setzt man schlieBlich noch

D*uy = sup D,u,

t>0

so besagt das Maximallemma von HARDY-LITTLEWOOD:

3. Fiir jede supermediane Funktion u gilt

u (x)

o

(3D ) Vl{Dméﬂ}SQ' (a:>0).
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Dabei bezeichnet 1, die Indikatorfunktion einer Menge A; die linke
Seite der Ungleichung (31) ist das Lebesgue-Mall der Menge

{yeR:D*u(y) >oa} n [x, + o [.

,,Fast tberall“ heiBt stets bis auf eine Borel-Menge 4 vom Lebesgue-
MalB Null. Hiermit dquivalent ist aber die Forderung

(32) V1,(x) = 0 ~ fiir alle x €R.

Interpretiert man in den Aussagen 1 und 2 fast iiberall im Sinne von
(32), so bekommen die Aussagen 1—3 einen Sinn fiir beliebige Halbgruppen
(P,);>o von Kernen auf einem MeBraum.

Es ist hochst bemerkenswert, daB die Aussagen 1—3 nahezu ohne
Zusatzbedingungen fir sub-Markovsche Halbgruppen (P,),», auf einem
MefBraum von MOKOBODZKI [25], [26] bewiesen werden konnten. Man muf
eigentlich nur voraussetzen, da3 die o-Algebra des MeBraumes von den
exzessiven Funktionen der Halbgruppe erzeugt wird. Dies ist in unserem
eingangs gewéhlten Beispiel der Fall.

6. AUSBLICK: RESOLVENTEN IN DER POTENTIALTHEORIE
Hiufig — ein typisches Beispiel hierfiir ist der Beweis des Satzes 2.1 —

gelangt man zu einer Halbgruppe (P,);-, von Kernen nur auf dem Umweg
iiber deren Resolvente (V) ;>0, Wobei V', den Kern,

8

(33) V,=[e*Pdt,

o

also die Laplace-Transformierte von (P,),s, bezeichnet. Es ist der Satz
von Hille-Yosida, der von einer Resolvente, d.h. genauer von einer der
Resolventengleichung

(34 V,=V,+4-wV,V, =20 (A, u > 0)

geniigenden Familie (V),-, von Kernen zu einer zugehdrigen, unter
geeigneten Zusatzvoraussetzungen eindeutig bestimmten Halbgruppe
(P,);>o von Kernen fiithrt. (Vgl. MEYER [24].)

AuBerdem ist es selbst bei gegebener Halbgruppe (P,),>, oft nur auf
dem Umweg iiber die Resolvente moglich, gewisse Eigenschaften nach-
‘zuweisen. Ist belsplelswelse (P,),>o eine Fellersche Halbgruppe auf einem
lokal-kompakten Raum X mit abzdhlbarer Basis, so 148t sich die Exzessivi-

‘
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