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und (i4)t>o auf den Gruppen G bzw. G' diese Eigenschaften besitzen.

Schwierigkeiten bereitet die Eigenschaft (iii).
Wir werden aber selbst in einem relativ krassen Fall sehen, daß sich auch

die Eigenschaft (iii) durch Zusatzbedingungen erhalten läßt. Es wird sich

um den Fall eines unendlichen Produktes handeln.

4. Harmonische strukturen auf T00

Wir betrachten die Kreislinie T, also den eindimensionalen Torus. Auf
der Charaktergruppe T Z sind « h> an2 mit dem Normierungsfaktor
a>0 sämtliche quadratische Formen. Jeder dieser quadratischen Formen

entspricht gemäß (19) eine symmetrische Faltungshalbgruppe t>o
vom lokalen Typ auf T. Dabei hat fiat eine stetige Dichte bezüglich des

Haar-Maßes 6 auf T (mit zu 1 normierter Gesamtmasse) :

(20) ßat — Qat @
•

Diese Dichte ist für a 1 der Wärmekern
00

(21) g,(d) Y e-tn2eike1+2 ^ e"'"2 cos nd
keZ n= 1

(ßt)t> 0 ist nichts anderes als die Faltungshalbgruppe der Brownschen

Bewegung auf T.

Wir betrachten nun auf dem unendlich-dimensionalen Torus T00

00

J! Tk, wobei jedes Tk gleich T ist, für eine zunächst beliebig gegebene
4=1 •

Folge sé (ak)keNreeller Zahlen ak>0die Faltungshalbgruppe (p;)t>0
mit

00

(22) vi ®
k= 1

' A

Auf der Charaktergruppe T00 Z(oo), d.h. auf der direkten Summe von
abzählbar unendlich vielen Kopien von Z, ergibt sich die Fourier-
Transformierte von /(f zu

(23) /C? (n) c-""n)
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mit q(n)X aknk>wobei «eZ(co) eine Folge (nk) ganzer Zahlen ist,

von denen höchstens endlich viele 7^ 0 sind, ist eine stetige quadratische

Form auf Z(o0). Daher ist Of)t>o symmetrisch und vom lokalen Typ,

also die Bedingung (i) des Forstschen Satzes erfüllt. Da T00 kompakt,

also die konstante Funktion 1 kompakten Träger besitzt und stets /if(l)
1 gilt, liegt keine transiente Halbgruppe vor. Wir gehen daher für beliebiges

A>0 zur Faltungshalbgruppe (.e~Mß1)t>0 über, die (i) und (ii) erfüllt.

Um (iii) erfüllen zu können, setzen wir
00

(24) pi $e~*>1dt.
0

Nach einem bekannten Satz der harmonischen Analyse besitzt pf genau

dann eine stetige Dichte pf bezüglich des Haar-Maßes von T00, wenn

Dies aber erweist sich als zu
00

(25) X e~tak < + co
fc= 1

äquivalent. Unter der Voraussetzung der Gültigkeit von (25) für jedes t > 0

besitzt dann das Maß pf die Dichte

00

(26) Pf J e~: dl dt
0

welche sich als nach unten halbstetig erweist. Stets ist p'f (0) +00.
Von Berg [5] wurde zunächst die Bedingung

« J1F
• "Z

fc=1V^
kurze Zeit darauf von Fuglede (unveröffentlicht)

o° 1

X "7= < + 00

It — 1 yj (Xfc

und schließlich 1977 erneut von Berg [6] die Bedingung

00 1

(27) X — < + œ
k= 1 ak
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als hinreichend dafür erkannt, daß (25) für jedes t > 0 gilt und pf für
jedes X > 0 in T°°\{0} stetig und reell ist. Auf diese Weise erhielt Berg [5],
[6] den Satz:

4.1 Erfüllt eine Folge sé (ak)keN positiver reeller Zahlen die Bedingung

(27), so existiert auf T für jedes X > 0 ein translationsinvariantes,
symmetrisches Garbendatum für welches (7100,3tiff) ein strenger

Brelot-Raum und p^x ein striktpositives, in r°°\{0} harmonisches Potential ist.

Damit hat man mittels Produktbildung eine ganze Schar harmonischer
Strukturen $?^x auf dem unendlich-dimensionalen Torus konstruiert.
Jede dieser Strukturen kann durch den linearen „Differentialoperator"

00 d2
(28) If, £ at -~-2- -X-id

k= 1 VÜk

beschrieben werden. Bezeichnet nämlich np : T00 Tp die kanonische
Projektion von 7700 auf den p-dimensionalen Torus Tp der ersten/? 1,2,...
Koordinaten, so liegen alle Funktionen fo np mit fe C2 (Tp) im
Definitionsbereich des infinitesimalen Erzeugers Z/f von (pf),>0 und es gilt

Li(Jon} iak^-Xf.
k=l v"k

Mit distributionstheoretischen Methoden kann man, ausgehend von
(28), das Garbendatum 34?f direkt beschreiben: Es bezeichne hierzu @(Q)
für offenes Q c= T°° die Menge aller Funktionen f o np mit p e N und

/e Cco(Tp), deren Träger in Q enthalten ist. Dann gilt

Jff(ß) {heC(ß): $ hLlgdd 0 für alle g e 2) (Q)}
Tp

Dabei kann man sogar 2 0 zulassen. Allerdings ist der dann entstehende
Brelot-Raum nicht mehr streng. Dieser Zugang findet sich ebenfalls bei
Berg [5]. Analoge Resultate wurden von Bendjkov [4] mit Methoden der
Theorie der Markov-Prozesse erzielt.

5. Beziehungen zur Differentiationstheorie

Über die Theorie der harmonischen Räume hinaus werden der
Potentialtheorie durch die Betrachtung von Halbgruppen von Kernen neue
Dimensionen eröffnet. Dies soll nun noch kurz skizziert werden.
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