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HALBGRUPPEN UND RESOLVENTEN
IN DER POTENTIALTHEORIE*

von Heinz BAUER

Der Vortrag verfolgte das Ziel, an Hand einiger neuer Resultate der
Potentialtheorie die zunehmend deutlicher werdende zentrale Rolle von
Halbgruppen und Resolventen in dieser Theorie aufzuzeigen.” Der Ver-
fasser hofft, damit auch einen Beitrag zu einer Standortbestimmung der
Potentialtheorie zu liefern. '

1. EIN BLICK AUF DIE KLASSISCHE THEORIE
Klassische Potentialtheorie heiB3t einerseits (lokaler Aspekt) das Studium
der Laplaceschen Differentialgleichung
@) 4h =0

im R", wobei wir uns auf den Fall n >> 3 beschrinken, und andererseits
(globaler Aspekt) das Studium der Newtonschen Kernfunktion

2 N@ =—

X[

(xeR". ?)

Aus ihr leiten sich die global definiérten Potentiale p ab. Dies sind alle
Funktionen p : R” — [0, + c0], welche nicht konstant gleich + co sind und
eine (notwendigerweise eindeutige) Darstellung

(3) p=N=xp

besitzen, wobei u ein positives Radon-MaB auf R” ist. Eine nicht-negative
Funktion u: R* - [0, + o] heiBt hyperharmonisch (auf R"), wenn sie von
der Form |

u=Nx*xu+nh

1) Ausarbeitung eines am 10. April 1978 an der ETH Ziirich im Rahmen des Inter-
national Symposium on Analysis gehaltenen Vortrages. Dieser Artikel wurde bereits in
Contributions to Analysis, Monographie de I’Ens. Math. N° 27, Genéve 1979, veroffentlicht.

%) |x| bezeichnet die euklidische Norm des Vektors x eR". |
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ist, wobei jetzt u ein beliebiges Radon-MaB > 0 auf R” und / eine positive
harmonische Funktion auf R, also eine (in diesem Fall konstante) Losung
h >0 von (1) ist. Diese hyperharmonischen Funktionen u > 0 koénnen
als nach unten halbstetige Funktionen durch die iibliche Mittelwert-
eigenschaft (Rieszscher Zerlegungssatz) oder durch die Giiltigkeit von
Au < 0 im distributions-theoretischen Sinne gekennzeichnet werden.
Klassische Potentialtheorie muBl aber auch unter dem Aspekt des
Studiums der Brownschen Halbgruppe gesehen werden. Dieser (ebenfalls

globale) Aspekt tritt historisch gesehen erst viel spiter in Erscheinung, |

ndmlich durch die bahnbrechenden Arbeiten von KAKUTANI [21], [22].
Die Brownsche Halbgruppe (oder die Halbgruppe der Brownschen Bewegung)
ist dabei die Faltungshalbgruppe (v,),», der WahrscheinlichkeitsmaBe

4) v = g,

wobei A" das n-dimensionale Lebesgue-MaB und g, die Dichte

|x |2

4t )
ist. Wie iiblich interpretieren wir v, als einen Kern, d.h. als den durch
Faltung wirkenden Operator P,:

P.f =vxf.

Dieser operiert auf den beschriinkten sowie auf den nicht-negativen Borel-
meBbaren Funktionen linear und positiv. Somit erscheint die Faltungshalb-
gruppe (v) ;> als eine Halbgruppe (P,) ,», von Kernen.

Beziiglich einer solchen Halbgruppe heiBt eine nicht-negative Funktion
u: R" = [0, +o0] exzessiv, wenn sie Borel-meBbar ist und der Bedingung

5) 6. (x) = (4n1) " Texp (=

(6) 4 | sup Pu = u

t>0

geniigt. Die potentialtheoretische Bedeutung dieser Halbgruppe wird
deutlich durch den fundamentalen Satz von DooB [15] und HuUNT [20]:

1.1. Die exzessiven Funktionen beziiglich der Brownschen Halbgruppe
fallen mit den nicht- negaz‘zven hyperharmonischen Funktionen zusammen.

Der analytische Grund fiir diesen Zusammenhang ist die Gleichheit

M [a@d=N®  (eR)

Ao
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mit dem positiven Faktor

1 n—2
Ch — WF 2 .

Der sich durch Integration der Halbgruppe (P) ;>0 ergebende Kern

®) v = | P,di
0

ist somit nichts anderes als der durch Faltung mit Hilfe des Males
) Kk =c¢ N

wirkende Kern Vf = x * f.

Damit sind es die drei Objekte 4, N und (P,) ;>o, die im M1tte1punkt
der klassischen Potentialtheorie stehen. Jedes dieser Objekte erlaubt die
Definition der (global definierten) hyperharmonischen Funktionen > 0.
Aus der Kenntnis eines dieser Objekte folgt die der anderen, denn N
ist die Fundamentalldsung von (1), interpretiert als der zu x gehdrige
Faltungskern V, berechnet sich N gemiB (8) aus (P,) ;s o, ferner ist 4
der infinitesimale Erzeuger von (P,) ;»o, d.h. es gilt
(10) Af = lim Iif——f

' . t—0
fiir alle Funktionen fe C? (R") mit kompakten Triger. Hierzu vergleiche
man BERG-FORST [7].

Der Satz 1.1 ist der Schliissel zum wahrschemhchkeltstheoretlschen
Verstindnis potentialtheoretischer Begriffsbildungen. Hierauf soll aber
hier nicht eingegangen werden. (Vgl. jedoch [2].)

2. HARMONISCHE RAUME UND FELLERSCHE HALBGRUPPEN

Die weiteren Teile des Vortrages werden vor allem durch die Frage
nach dem Zusammenhang zwischen lokaler Potentlaltheorle und Halb-
gruppen von Kernen motiviert.

Als lokale Potentialtheorie verstehen wir dabei die Theorie der harmo-
nischen Raume, die sich aus der Idee entwickelt hat, die Theorie der Laplace-
Gleichung (1) auf allgemeinere elliptische und parabolische Differential-
gleichungen etwa mit einer differenzierbaren Mannigfaltigkeit als Grund-
raum zu entwickeln. (Vgl. hierzu [1], BrReLot [10], [11], [12] und CoN-
STANTINESCU-CORNEA [13].)
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Der Einfachheit halber sollen hier harmonische Rdume nur im Sinne
von BRELOT [10] verstanden werden. Es sei demnach X ein lokal-kompakter,
(Hausdorff-) Raum und J# ein Garbendatum von Vektorriumen stetiger
reeller Funktionen. (X,5#) heiBt dann ein Brelot-Raum, wenn X keine
isolierten Punkte besitzt und lokal-zusammenhingend ist, eine Basis regu-
lirer Mengen existiert (per definitionem ist fiir diese das Dirichletsche Problem
fiir alle stetigen Randwerte eindeutig und ,,positiv* 16sbar) und das Bre-
lotsche Konvergenzaxiom erfiillt ist. Wir werden nur strenge oder P-Brelot-
Rédume betrachten, also solche mit mindestens einem Potential p % 0. Die
Definition dieser Begriffsbildungen findet man in [10], [11] und [1]. Fiir
n > 3 liefert das Garbendatum J#, der Losungen von (1), also der klas-
sischen harmonischen Losungen, den strengen Brelot-Raum (R, H ).

Ausgeldst durch die Untersuchung Markovscher Prozesse haben sich
in zunehmendem MaBe spezielle Halbgruppen von Kernen als wichtig
erwiesen. Auf einem lokal-kompakten Raum X mit abzidhlbarer Basis
sei (P,) ;>0 eine Halbgruppe von Kernen. Jedes P, ist also eine Funktion
auf X x By, wobei By die o-Algebra der Borelschen Mengen bezeich-
net; fiir jedes Ay,eBy bzw. x,€ X werden dabei die Abbildungen
A = P, (xq, A) bzw. x — P, (x, A,) als nicht-negative MaBe auf B, bzw.
als (nicht-negative) Borel-meBbare Funktionen vorausgesetzt. Durch
Integration nach der zweiten Variablen wirkt jedes F als linearer Operator
auf geeigneten Rdumen meBbarer Funktionen: |

(11) P () = [P(x,dy) £ ()

(z.B. fiir Borel-meBbares f > 0). Die Halbgruppeneigenschaft besagt nichts
anderes ‘als o | :

(12) Ps+tf = Ps Ptf

fur alle Borel-meBbaren Funktionen f > 0 und fur alle s,z > 0 oder
— dquivalent hierzu —

(13) Popi(x,4) = [Py (x,dy) P, (y, 4)

fiir alle xe X und A4 € By,. Es miissen also die sogenannten Chapman-
Kolmogorov-Gleichungen erfullt sein.t) .

Eine solche Halbgruppe von Kernen heil3t Fellersch wenn Jeder Kern P,
sub-Markovsch, also P,} <1 erfiillt ist, wenn P, den Raum C, (X) der im
Unendlichen Versr'hwmdenden stetlgen reellen Funktlonen auf X in sich
abbildet, und wenn auBerdem

1) Vgl. hierzu [3] und MEYER [24].
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lim P,f = f fiir alle f € Cy (X) |

t—0
im Sinne der gleichmiBigen Konvergenz erfiillt ist. Einer solchen Fellerschen
Halbgruppe sind wir in der klassischen Theorie bereits begegnet: die
Brownsche Halbgruppe ist Fellersch. Jeder der Kerne P, ist dort sogar
Markovsch, erfullt also P,1 = 1.

Eines der Leitmotive fiir die Entwicklung der Theorie der harmonischen
Riume war, iiber Jahre hinweg, die Frage nach der Existenz einer Halb-
gruppe von Kernen auf einem streng harmonischen Raum (X, 5#) derart,
daB, wie in der klassischen Theorie, die exzessiven Funktionen mit den
hyperharmonischen Funktionen > 0 auf X iibereinstimmen. Hyperharmo-
nisch heissen dabei die durch die Mittelwerteigenschalft (fiir regulire Mengen)
definierten nach unten halbstetigen Funktionen. Die Antwort auf diese
Frage ist Ja. Sie wurde durch MEYER [23] fiir Brelotsche und spater durch
BoBOC-CONSTANTINESCU-CORNEA [9] und HANSEN [18], [19] fiir allgemeinere
Typen harmonischer Rdume gegeben: |

2.1. Auf einem streng harmonischen Raum (X, #) existieren stets
ein strikt positives, stetiges, reelles Potential q und eine Fellersche Halbgruppe

: 1
(0)),» o derart, dass deren exzessive Funktionen mit den mit E multiplizierten

nicht-negativen hyperharmonischen Funktionen iibereinstimmen.

Ist die konstante Funktion 1 hyperharmonisch, so fallen die nichi-nega-
tiven hyperharmonischen Funktionen mit den exzessiven Funktionen der neuen
Halbgruppe

1
(14) P.f = th(7f) (f € Co (X))

zusammen.

Man nennt die Halbgruppe (P,) ;o auf Grund ihrer Herkunft auch
quasi-Fellersch.

3. DER saTzZ VON G. FORST

Im Gegensatz zu der dem Resultat 2.1 zugrunde liegenden Fragestellung
ist die umgekehrte Frage nach Eigenschaften einer Halbgruppe (P,) s,
von Kernen auf einem Raum X, welche die Existenz eines Garbendatums
garantieren, so daB (X, #) ein harmonischer Raum und die exzessiven
Funktionen von (P,),>, mit den hyperharmonischen Funktionen > 0
zusammenfallen, neueren Datums. Es sind nur Teilantworten bekannt.
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Jede Teilantwort ist aber von Interesse, da sie erhoffen 148t, dem Problem
der Produktbildung harmonischer Rdume niher zu treten.

Sind nédmlich (P,) ,», und (P;) ,~, Halbgruppen von Kernen auf lokal-
kompakten Rdumen X bzw. X', so liefert die Bildung der Produktmalle

0,((%:x),.) = P.(x,.) ® P{ (x',.)

eine Halbgruppe (Q,) ,», von Kernen auf X x X'. Sind (P,) ;>, und
(P/) ;>0 im Sinne von Satz 2.1 mit harmonischen Strukturen # auf X bzw.
A" auf X' verkniipft und 148t sich mit Hilfe allgemeiner Sétze entscheiden,
ob auch (Q)) ;> zu einer harmonischen Struktur gehort, so liegt es nahe,
diese als ein Produkt der harmonischen Riume (X, #) und (X', #')
zu interpretieren. Zu diesem Problem sind gerade in letzter Zeit Resultate von
U. ScHIRMEIER [28] erzielt worden. Hier geht es uns nur um den Hinweis
auf die grundsitzliche Bedeutung dieser Fragestellung: Wir werden sehen,
daB3 sie selbst unter. stark einschrinkenden Zusatzannahmen zu neuen,
uiberraschenden Beispielen harmonischer Rdume fiihrt.

Es werde jetzt ndmlich vorausgesetzt, daB der lokal-kompakte Grund-
raum eine lokal-kompakte abelsche Gruppe G mit abzihlbarer Basis
ist; ferner sei die gegebene Halbgruppe (P,),-, Fellersch und translations-
invariant, also

Pt(fOT'-—a) = Ta(Ptf)

fiir jede Translation 7, (x) = x + a erfillt (+ > 0,:f Borel-meBbar > 0).
Diese und allein diese Halbgruppen riihren von Faltungshalbgruppen
(4,) +>o von positiven Radon-MaBen auf G her, d.h. es gilt

(15) P f = p*f.
Faltungshalbgruppe heille dabei, dall neben

(16) Usve = Hg* Iy fur s, t >0 *

die Bedingungen

(17) m(@<1 (>0
und |
(18) C lim g, = e
) . t—0 ’ [

(in der vagen Topologie) erfiillt sind.!)

1) g, bezeichnet die Einheitsmasse in 0. Zu diesem und den folgenden Resultaten
iiber Faltungshalbgruppen vom lokalen Typ vergleiche man BErRG-ForsT [7].




Eine solche Faltungshalbgruppe heilit vom lokalen Typ, wenn fur
ihren infinitesimalen Erzeuger 4 mit Definitionsbereich D, <= C, (G) gilt:
ist feD, Null in der Umgebung eines Punktes xeG, so ist f an der
Stelle x gleich Null. Im Fall einer symmetrischen Halbgruppe, wo also jedes
der MaBe p, bei der Spiegelung x +—>—Xx in sich iibergeht, ist dies dquivalent

zum folgenden Verhalten der Fourier-Transformierten u, von u,: es gibt
' A

eine stetige quadratische Form g auf der Charaktergruppe G und eine
Konstante ¢ > 0 mit |

(19) b= e tC*D  firglle t > 0.

Eine wichtige Beantwortung der zu Beginn dieses Abschnittes gestellten
Frage gibt der folgende Satz von FORST [17]:

31. Sei G eine nicht diskrete, lokal-kompakte abelsche Gruppe mit
abzéhlbarer Basis. Ferner sei (11,)>o eine Faltungshalbgruppe von Massen
mit folgenden Eigenschaften :

() (n) ist symmetrisch und vom lokalen Typ ;-
(ii) die Halbgruppe ist transient, d.h. es existiert das Integral

< (f) = of e (f) di

fiir jede Funktion fe Co(G) mit kompaktem Trager;
(i) beziiglich des Haarschen Masses © von G besitzt das Mass x eine
nach unten halbstetige Dichte N, welche auf G\ {0} stetig und reell ist.
Dann existiert ein translationsinvariantes, symmetrisches Garbendatum H
auf G derart, dass (G, #) ein strenger Brelot-Raum und N einin G \ {0}
harmonisches Potential ist.

Aus einem Resultat von BLIEDTNER [8] folgt ferner

3.2. Die nicht-negativen hyperharmonischen Funktionen auf G fallen
mit den exzessiven Funktionen der gegebenen Faltungshalbgruppe zusammen.

Speziell ordnet sich die klassische Potentialtheorie in das Ergebnis von
FORST ein.

Kehren wir nun nochmals zu der eingangs erhobenen Frage nach der
Bildung von Produkten harmonischer Riume zuriick. Man sieht sofort,

daB die Produkthalbgruppe (g, ®u;).», auf G x G’ die Eigenschaften

(i) und (i) besitzt, wenn zwei vorgegebene Faltungshalbgruppen (u,);>o

e e e A e e s e 3 e o A Ayt e At A
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und (i4;);>, auf den Gruppen G bzw. G’ diese Eigenschaften be31tzen
Schwierigkeiten bereitet die Eigenschaft (ii1).

Wir werden aber selbst in einem relativ krassen Fall sehen, daB sich auch

die Eigenschaft (iii) durch Zusatzbedingungen erhalten 1a6t. Es wird sich
um den Fall eines unendlichen Produktes handeln. . '

4., HARMONISCHE STRUKTUREN AUF T%®

Wir betrachten die Kreislinie T, also den eindimensionalen Torus. Auf ",

der Charaktergruppe T =17 sind n+> an® mit dem Normierungsfaktor
a>0 simtliche quadratische Formen. Jeder dieser quadratischen Formen

entspricht gemiB (19) eine symmetrische Faltungshalbgruppe () 150

vom lokalen Typ auf T. Dabei hat p, eine stetige Dichte beziiglich des
Haar-MaBes 0 auf 7 (mit zu 1 normierter Gesamtmasse):

(20) ‘ tuat = gatO *

Diese Dichte ist fiir a = 1 der Warmekern

(21) g, (0 =Y e e = 1 4+2Y e cosnf
keZ : n=1 ‘
| 0 -+ 2mk)?
t keZ 4t

(,),>o ist nichts anderes als die Faltungshalbgruppe der Brownschen. |

Bewegung auf T.

Wir betrachten nun auf dem unendlich-dimensionalen Torus 7®

H T,, wobei jedes T} gleich T 1st fiir eine zunéchst belleblg gegebene
Folge sz (@) ken reeller Zahlen ak> 0 die Faltungshalbgruppe ()u,)t>0 -

mit

2 B = @ Hay

" Auf der Charaktergruppe T = Z(“) d.h. auf der direkten Summe von -

abzdhlbar unendlich v1elen Kopien von Z, ergibt sich die Fourier-
Transformierte von ut zZu

©3) o ﬁ“f’<n)=e“’“”’

i
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mit q(n) = z a, ny, wobei neZ(°°) eine Folge (nk) ganzer Zahlen ist,

von denen hochstens endlich viele # 0 sind. g ist eine stetige quadratische
Form auf Z(. Daher ist (u¥),», symmetrisch und vom lokalen Typ,
also die Bedingung (i) des Forstschen Satzes erfillt. Da T kompakt
also die konstante Funktion 1 kompakten Trdger besitzt und stets u 2(1)
= 1 gilt, liegt keine transiente Halbgruppe vor. Wir gehen daher fiir belie-
biges A >0 zur Faltungshalbgruppe e 1) 5o liber, die (i) und (ii) erfillt.
Um (iii) erfiillen zu konnen, setzen Wir

(24) ’ 9 = je'“u, dt .

Nach einem bekannten Satz der harmonischen Analyse besitzt 1% genau
dann eine stetige Dichte g? beziiglich des Haar-MaBes © von T, wenn

ZZ(OO)Iut(n)<+ o0 .

Dies aber erweist sich als zu

M8

(25) e—tak < + o0

]

k=1

dquivalent. Unter der Voraussetzung der Giiltigkeit von (25) fiir jedes >0
besitzt dann das MaB p¥ die Dichte

< dt

Ot 8
[N}

(26) 0% =

welche sich als nach unten halbstetig erweist. Stets ist ;'f (O) = + o0,
Von BERG [5] wurde zunédchst die Bedingung

ey ~ %

L’Enseignement mathém., t. XXV, fasc. 1-2. 2
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als hinreichend dafiir erkannt daB (25) fiir jedes ¢ > 0 gilt und p¥ fiir
jedes 4 > 0 in T*\{0} stetig und reell ist. Auf diese Weise erhielt BERG [5],
[6] den Satz: : :

4.1 Erfiillt eine Folge of = (a)yn positiver reeller Zahlen die Bedin-
gung (27), so existiert auf T fiir jedes ) > 0 ein translationsinvariantes,
symmetrisches Garbendatum %, fiir welches (T, # ) ein strenger

Brelot-Raum und p%, ein strikt positives, in T*\{0} harmonisches Potentialist.

Damit hat man mittels Produktbildung eine ganze Schar harmonischer
Strukturen #% auf dem unendlich-dimensionalen Torus konstruiert. |
Jede dieser Strukturen kann durch den linearen ,, Differentialoperator

(o) 62
(28) : L"“'—Zak — — A-id
007
beschrieben werden. Bezeichnet nédmlich n,: T — T? die kanonische
Projektion von T auf den p-dimensionalen Torus 77 der erstenp = 1,2,... |
Koordinaten, so liegen alle Funktionen fo n, mit fe C*(T?) im Defini- |
tionsbereich des infinitesimalen Erzeugers LY von (u¥),., und es gilt
p 62 f | |

LJ;..{ (fOTCp) = Z ay

— — Af.
& o ~ Y

Mit distributionstheoretischen Methoden kann man, ausgehend von
(28), das Garbendatum #°% direkt beschreiben: Es bezeichne hierzu @ (2)
fiir offenes Q = T'” die Menge aller Funktionen fon, mit pe N und
fe C®(T?), deren Trager in Q enthalten ist. Dann gilt

HT(Q) ={heC(Q): th gdd =0 firallege2(Q)}.

Dabei kann man sogar A = 0 zulassen. Allerdings ist der dann entstehende |
Brelot-Raum nicht mehr streng. Dieser Zugang findet sich ebenfalls bei
BERG [5]. Analoge Resultate wurden von BENDIKOV [4] mit Methoden der
Theorie der Markov-Prozesse erzielt.

5. BEZIEHUNGEN ZUR DIFFERENTIATIONSTHEORIE
Uber die Theorie der harmonischen Riume hinaus werden der Poten-

tialtheorie durch die Betrachtung von Halbgruppen von Kernen neue
Dimensionen erdffnet. Dies soll nun noch kurz skizziert werden. |
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Eme der einfachsten Faltungshalbgruppen. auf R ist die’ Halbgruppe
(- ;>0 der Einheitsmassen in —¢. Die zugehorlgen Kerne P, operieren
wie folgt

Pf (x) = f(x+1).
Der durch Integration entstehende (Potential-) Kern ¥ hat also die Gestalt

VI = [PS0di = § 10 d.

Die supermedian genannten Funktionen bezﬁglich' einer Halbgruppe
(P)>0, d.h. diejenigen Borel-meBbaren Funktionen f > 0 mit

Pf<f - fir 'alle t >0,

sind im Falle dieser speziellen Halbgruppe gerade die monoton fallenden
Funktionen f > 0 auf R. Fiir Lebesgue-integrierbares f auf R ist Vf absolut
stetlg und lim Vf(x) = 0. Setzen wir noch

x>+ o0
fPf
t

(t > 0)

und '
Df = lim sup D,f,

t—0

so erhdlt man aus den klassischen Differentiationssitzen der Lebesgue-
schen Theorie:

1. Fiir jede supermediane Funktion u existiert der reelle Limes

(29) Du = 1lim D, u fast iiberall.

t—>0’

2. Fiir jede Borel-meBbare Funktlon S =0 auf R mit Vf (X) < +
fiir alle x e R gilt

(30) DVf = f fast iiberall.

Setzt man schlieBlich noch

D*uy = sup D,u,

t>0

so besagt das Maximallemma von HARDY-LITTLEWOOD:

3. Fiir jede supermediane Funktion u gilt

u (x)

o

(3D ) Vl{Dméﬂ}SQ' (a:>0).
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Dabei bezeichnet 1, die Indikatorfunktion einer Menge A; die linke
Seite der Ungleichung (31) ist das Lebesgue-Mall der Menge

{yeR:D*u(y) >oa} n [x, + o [.

,,Fast tberall“ heiBt stets bis auf eine Borel-Menge 4 vom Lebesgue-
MalB Null. Hiermit dquivalent ist aber die Forderung

(32) V1,(x) = 0 ~ fiir alle x €R.

Interpretiert man in den Aussagen 1 und 2 fast iiberall im Sinne von
(32), so bekommen die Aussagen 1—3 einen Sinn fiir beliebige Halbgruppen
(P,);>o von Kernen auf einem MeBraum.

Es ist hochst bemerkenswert, daB die Aussagen 1—3 nahezu ohne
Zusatzbedingungen fir sub-Markovsche Halbgruppen (P,),», auf einem
MefBraum von MOKOBODZKI [25], [26] bewiesen werden konnten. Man muf
eigentlich nur voraussetzen, da3 die o-Algebra des MeBraumes von den
exzessiven Funktionen der Halbgruppe erzeugt wird. Dies ist in unserem
eingangs gewéhlten Beispiel der Fall.

6. AUSBLICK: RESOLVENTEN IN DER POTENTIALTHEORIE
Hiufig — ein typisches Beispiel hierfiir ist der Beweis des Satzes 2.1 —

gelangt man zu einer Halbgruppe (P,);-, von Kernen nur auf dem Umweg
iiber deren Resolvente (V) ;>0, Wobei V', den Kern,

8

(33) V,=[e*Pdt,

o

also die Laplace-Transformierte von (P,),s, bezeichnet. Es ist der Satz
von Hille-Yosida, der von einer Resolvente, d.h. genauer von einer der
Resolventengleichung

(34 V,=V,+4-wV,V, =20 (A, u > 0)

geniigenden Familie (V),-, von Kernen zu einer zugehdrigen, unter
geeigneten Zusatzvoraussetzungen eindeutig bestimmten Halbgruppe
(P,);>o von Kernen fiithrt. (Vgl. MEYER [24].)

AuBerdem ist es selbst bei gegebener Halbgruppe (P,),>, oft nur auf
dem Umweg iiber die Resolvente moglich, gewisse Eigenschaften nach-
‘zuweisen. Ist belsplelswelse (P,),>o eine Fellersche Halbgruppe auf einem
lokal-kompakten Raum X mit abzdhlbarer Basis, so 148t sich die Exzessivi-

‘
i ]
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tit einer Borel-meBbaren Funktion u > 0 auf X durch die zur Definition
dquivalente Bedingung \

(35) | sup A V,u =u
- A>0
fiir die Resolvente nachweisen.

Dies hat zur Folge, daB der explizite Gebrauch der Halbgruppe oft
unndtig und Sétze gleich in der Sprache der Resolventen formuliert und
bewiesen werden konnen. Héufig wird hierdurch groBere Allgemeinheit
erzielt, ndmlich dann, wenn keine zugehorige Halbgruppe existiert. Ein
Beispiel sind die Sdtze von MOKOBODZKI des letzten Abschnitts, welche in
[25], [26] gleich in der Sprache der Resolventen formuliert werden. Auch
die Untersuchungen von CORNEA-LICEA [14] sind in diesem Licht zu sehen.

Resolventen treten auch bei hyperbolischen linearen Differential-
gleichungen zweiter Ordnung auf — allerdings mu3 man dabei auf die
Positivitit der Kerne verzichten. RITTER [27] (vgl. auch [16]) hat nidmlich
gezeigt, daB fiir groBe Klassen solcher Differentialgleichungen der durch
die Fundamentallosung definierte Kern in eine Resolvente reeller Kerne
aufgelost werden kann. Hierdurch diirfte es mdglich werden, potential-
theoretische Methoden auch in das Gebiet der hyperbolischen Differential-
gleichungen eindringen zu lassen. Das Gebiet der parabolischen Differential-
gleichungen wurde potentialtheoretischen Methoden bereits durch den
allgemeinen Begriff des harmonischen Raumes erschlossen (vgl. [1] und

[13]).
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