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HALBGRUPPEN UND RESOLVENTEN

IN DER POTENTIALTHEORIE 1

von Heinz Bauer

Der Vortrag verfolgte das Ziel, an Hand einiger neuer Resultate der

Potentialtheorie die zunehmend deutlicher werdende zentrale Rolle von

Halbgruppen und Resolventen in dieser Theorie aufzuzeigen. Der
Verfasser hofft, damit auch einen Beitrag zu einer Standorthestimmung der

Potentialtheorie zu liefern.

1. Ein blick auf die klassische Theorie

Klassische Potentialtheorie heißt einerseits (lokaler Aspekt) das Studium

der Laplaceschen Differentialgleichung

(1) Ah 0

im R", wobei wir uns auf den Fall n>3 beschränken, und andererseits

(globaler Aspekt) das Studium der Newtonschen Kernfunktion

(2) IV (x) y^TjW (xeR"). 2)

Aus ihr leiten sich die global definierten Potentiale p ab. Dies sind alle

Funktionen p : RM -> [0, + oo], welche nicht konstant gleich + oo sind und
eine (notwendigerweise eindeutige) Darstellung

(3) p N*p
besitzen, wobei p ein positives Radon-Maß auf Rn ist. Eine nicht-negative
Funktion u: R" -> [0, +oo] heißt hyperharmonisch (auf Rn), wenn sie von
der Form

u N * p + h

x) Ausarbeitung eines am 10. April 1978 an der ETH Zürich im Rahmen des
International Symposium on Analysis gehaltenen Vortrages. Dieser Artikel wurde bereits in
Contributions to Analysis, Monographie de YEns. Math. N° 27, Genève 1979, veröffentlicht.

2) |jc| bezeichnet die euklidische Norm des Vektors *eRn.
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ist, wobei jetzt g ein beliebiges Radon-Maß > 0 auf R" und h eine positive
harmonische Funktion auf R", also eine (in diesem Fall konstante) Lösung
h > 0 von (1) ist. Diese hyperharmonischen Funktionen u > 0 können
als nach unten halbstetige Funktionen durch die übliche Mittelwerteigenschaft

(Rieszscher Zerlegungssatz) oder durch die Gültigkeit von
Au < 0 im distributions-theoretischen Sinne gekennzeichnet werden.

Klassische Potentialtheorie muß aber auch unter dem Aspekt des
Studiums der Brownschen Halbgruppe gesehen werden. Dieser (ebenfalls
globale) Aspekt tritt historisch gesehen erst viel später in Erscheinung,
nämlich durch die bahnbrechenden Arbeiten von Kakutani [21], [22].
Die Brownsche Halbgruppe (oder die Halbgruppe der Brownschen Bewegung)
ist dabei die Faltungshalbgruppe (vt)i>0 der Wahrscheinlichkeitsmaße

(4) vt gtXn,

wobei Xn das «-dimensionale Lebesgue-Maß und gt die Dichte

(5) Qt 00 (4 7i 0 ~ 2 exp
—^

ist. Wie üblich interpretieren wir vt als einen Kern, d.h. als den durch
Faltung wirkenden Operator Pt :

Ptf vt*f-
Dieser operiert auf den beschränkten sowie auf den nicht-negativen
Borelmeßbaren Funktionen linear und positiv. Somit erscheint die Faltungshalbgruppe

(vt) t>0 als eine Halbgruppe (.Pt) t>0 von Kernen.
Bezüglich einer solchen Halbgruppe heißt eine nicht-negative Funktion

u: RM -> [0, +co] exzessiv, wenn sie Borel-meßbar ist und der Bedingung

(6) sup Ptu u
t> o

genügt. Die potentialtheoretische Bedeutung dieser Halbgruppe wird
deutlich durch den fundamentalen Satz von Doob [15] und Hunt [20]:

1.1. Die exzessiven Funktionen bezüglich der Brownschen Halbgruppe
fallen mit den nicht-negativen hyperharmonischen Funktionen zusammen.

Der analytische Grund für diesen Zusammenhang ist die Gleichheit
00

(7) J gt(x)dtc„JV(x) (x e R")
0
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mit dem positiven Faktor
1 (n— 2

cn r4nn/2 V 2

Der sich durch Integration der Halbgruppe (Pt) t> o ergebende Kern
00

(8) Vj P, dt
0

ist somit nichts anderes als der durch Faltung mit Hilfe des Maßes

(9) k c,NX*

wirkende Kern Vf k* f.
Damit sind es die drei Objekte A,N und (Pr) (>0, die im Mittelpunkt

der klassischen Potentialtheorie stehen. Jedes dieser Objekte erlaubt die

Definition der (global definierten) hyperharmonischen Funktionen > 0.

Aus der Kenntnis eines dieser Objekte folgt die der anderen, denn

ist die Fundamentallösung von (1), interpretiert als der zu k gehörige

Faltungskern V, berechnet sich N gemäß (8) aus (Pt)t>o> ferner ist A

der infinitesimale Erzeuger von Pt)t>0, d.h. es gilt

Ptf ~f
(10) Af lim

t-^0 t

für alle Funktionen fe C2 (RM) mit kompakten Träger. Hierzu vergleiche

man Berg-Forst [7].

Der Satz 1.1 ist der Schlüssel zum wahrscheinlichkeitstheoretischen

Verständnis potentialtheoretischer Begriffsbildungen. Hierauf soll aber

hier nicht eingegangen werden. (Vgl. jedoch [2].)

2. Harmonische räume und fellersche halbgruppen

Die weiteren Teile des Vortrages werden vor allem durch die Frage
nach dem Zusammenhang zwischen lokaler Potentialtheorie und

Halbgruppen von Kernen motiviert.
Als lokale Potentialtheorie verstehen wir dabei die Theorie der

harmonischen Räume, die sich aus der Idee entwickelt hat, die Theorie der Laplace-
Gleichung (1) auf allgemeinere elliptische und parabolische Differentialgleichungen

etwa mit einer differenzierbaren Mannigfaltigkeit als Grundraum

zu entwickeln. (Vgl. hierzu [1], Brelot [10], [11], [12] und Con-
STANTINESCU-CORNEA [13].)
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Der Einfachheit halber sollen hier harmonische Räume nur im Sinne
von Brelot [10] verstanden werden. Es sei demnach X ein lokal-kompakter,
(Hausdorff-) Raum und X? ein Garbendatum von Vektorräumen stetiger
reeller Funktionen. (Xheißt dann ein Brelot-Raum, wenn X keine
isolierten Punkte besitzt und lokal-zusammenhängend ist, eine Basis regulärer

Mengen existiert (per definitionem ist für diese das Dirichletsche Problem
für alle stetigen Randwerte eindeutig und „positiv" lösbar) und das Bre-
lotsche Konvergenzaxiom erfüllt ist. Wir werden nur strenge oder ^3-Brelot-
Räume betrachten, also solche mit mindestens einem Potential p =£ 0. Die
Definition dieser Begriffsbildungen findet man in [10], [11] und [1]. Für
n > 3 liefert das Garbendatum XfÂ der Lösungen von (1), also der
klassischen harmonischen Lösungen, den strengen Brelot-Raum (RB, XfA).

Ausgelöst durch die Untersuchung Markovscher Prozesse haben sich
in zunehmendem Maße spezielle Halbgruppen von Kernen als wichtig
erwiesen. Auf einem lokal-kompakten Raum X mit abzählbarer Basis
sei (.Pt) t>0 eine Halbgruppe von Kernen. Jedes Pt ist also eine Funktion
auf X x 95z, wobei 23x die c-Algebra der Boreischen Mengen bezeichnet;

für jedes A0.efBx bzw. x0eX werden dabei die Abbildungen
Ah>Pt (x0, A) bzw. x h> Pt (x, A0) als nicht-negative Maße auf 23 x bzw.
als (nicht-negative) Borel-meßbare Funktionen vorausgesetzt. Durch
Integration nach der zweiten Variablen wirkt jedes F als linearer Operator
auf geeigneten Räumen meßbarer Funktionen:

(11) Ptf(x)=^Pt(x,dy)f(y)
(z.B. für Borel-meßbares /> 0). Die Halbgruppeneigenschaft besagt nichts
anderes als

(12) Ps+tf PsPtf

für alle Borel-meßbaren Funktionen / > 0 und für alle s>, t > 0 oder
— äquivalent hierzu —

(13) Ps+t(x, Ä)J P(x, dy) P, (y, A)

für alle xe X und A é Es müssen also die sogenannten Chapman-
Kolmogorov-Gleichungen erfüllt sein.1)

Eine solche Halbgruppe von Kernen heißt Fellersch, wenn jeder Kern Pt
sub-Markovsch, also Pt 1 < 1 erfüllt ist, wenn Pt den Raum C0 (X) der im
Unendlichen verschwindenden, stetigen, reellen Funktionen auf X in sich
abbildet, und wenn außerdem

x) Vgl. hierzu [3] und Meyer [24].
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lim PJ f für alle e C0 (X)
t~* 0

im Sinne der gleichmäßigen Konvergenz erfüllt ist. Einer solchen Fellerschen

Halbgruppe sind wir in der klassischen Theorie bereits begegnet: die

Brownsche Halbgruppe ist Fellersch. Jeder der Kerne Pt ist dort sogar

Markovsch, erfüllt also Pt 1 1.

Eines der Leitmotive für die Entwicklung der Theorie der harmonischen

Räume war, über Jahre hinweg, die Frage nach der Existenz einer

Halbgruppe von Kernen auf einem streng harmonischen Raum (X, derart,

daß, wie in der klassischen Theorie, die exzessiven Funktionen mit den

hyperharmonischen Funktionen 0 auf X übereinstimmen. Hyperharmonisch

heissen dabei die durch die Mittelwerteigenschaft (für reguläre Mengen)

definierten nach unten halbstetigen Funktionen. Die Antwort auf diese

Frage ist Ja. Sie wurde durch Meyer [23] für Brelotsche und später durch

Boboc-Constantinescu-Cornea [9] und Hansen [18], [19] für allgemeinere

Typen harmonischer Räume gegeben:

2.1. Auf einem streng harmonischen Raum {X, X?) existieren stets

ein striktpositives, stetiges, reelles Potential q und eine Fellersche Halbgruppe

(Qt)t> o derart, dass deren exzessive Funktionen mit den mit — multiplizierten

nicht-negativen hyperharmonischen Funktionen übereinstimmen.

Ist die konstante Funktion 1 hyperharmonisch, so fallen die nicht-negativen

hyperharmonischen Funktionen mit den exzessiven Funktionen der neuen

Halbgruppe

(14) Pt/=«ö,(—/) (/eC0(JO)
a

zusammen.

Man nennt die Halbgruppe (Pt) t>0 auf Grund ihrer Herkunft auch

quasi-Fellerseh.

3. Der satz von G. Forst

Im Gegensatz zu der dem Resultat 2.1 zugrunde liegenden Fragestellung
ist die umgekehrte Frage nach Eigenschaften einer Halbgruppe (Pt) t>o
von Kernen auf einem Raum X, welche die Existenz eines Garbendatums

garantieren, so daß (X, ein harmonischer Raum und die exzessiven

Funktionen von (Pt) t>0 mit den hyperharmonischen Funktionen >0
zusammenfallen, neueren Datums. Es sind nur Teilantworten bekannt.
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Jede Teilantwort ist aber von Interesse, da sie erhoffen läßt, dem Problem
der Produktbildung harmonischer Räume näher zu treten.

Sind nämlich (Pt).t>0 und (P't) t>0 Halbgruppen von Kernen auf
lokalkompakten Räumen X bzw. X\ so liefert die Bildung der Produktmaße

eine Halbgruppe (Qt) t>0 von Kernen auf X x X'. Sind (Pt) t>0 und
(P't)t> o im Sinne von Satz 2.1 mit harmonischen Strukturen auf Xbzw.
J4? ' auf X ' verknüpft und läßt sich mit Hilfe allgemeiner Sätze entscheiden,
ob auch (Qt) f>0 zu einer harmonischen Struktur gehört, so liegt es nahe,
diese als ein Produkt der harmonischen Räume (X, und (X\ 34?')
zu interpretieren. Zu diesem Problem sind gerade in letzter Zeit Resultate von
U. Schirmeier [28] erzielt worden. Hier geht es uns nur um den Hinweis
auf die grundsätzliche Bedeutung dieser Fragestellung: Wir werden sehen,
daß sie selbst unter stark einschränkenden Zusatzannahmen zu neuen,
überraschenden Beispielen harmonischer Räume führt.

Es werde jetzt nämlich vorausgesetzt, daß der lokal-kompakte Grundraum

eine lokal-kompakte abelsche Gruppe G mit abzählbarer Basis

ist; ferner sei die gegebene Halbgruppe (Pt)t>0 Fellersch und translationsinvariant,

also

für jede Translation xa (x) x + a erfüllt (t > 0, / Borel-meßbar > 0).
Diese und allein diese Halbgruppen rühren von Faltungshalbgruppen
(ßt) t>o von positiven Radon-Maßen auf G her, d.h. es gilt

Qt ((.X, x'),.) P,(x,)<g> P't

(15) Ptf Vt*f-
Faltungshalbgruppe heiße dabei, daß neben

(16)

die Bedingungen

(17)

I«s+t Ius*Vtfür M > o

tt(G)< 1 0)

und

(18) lim ß, e0

(in der vagen Topologie) erfüllt sind.1)

x) e0 bezeichnet die Einheitsmasse in 0. Zu diesem und den folgenden Resultaten
über Faltungshalbgruppen vom lokalen Typ vergleiche man Berg-Forst [7],
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Eine solche Faltungshalbgruppe heißt vom lokalen wenn für

ihren infinitesimalen Erzeuger A mit Definitionsbereich DAcz C0 gilt:

ist fsDÄ Null in der Umgebung eines Punktes xeG, so ist / an der

Stelle x gleich Null. Im Fall einer symmetrischen Halbgruppe, wo also jedes

der Maße p,bei der Spiegelung xi->—x in sich übergeht,dst dies äquivalent

zum folgenden Verhalten der Fourier-Transformierten von^/q
: es gibt

eine stetige quadratische Form q auf der Charaktergruppe und eine

Konstante c > 0 mit

(19) (c+^} für alle t > 0.

Eine wichtige Beantwortung der zu Beginn dieses Abschnittes gestellten

Frage gibt der folgende Satz von Forst [17]:

3.1. Sei G eine nicht diskrete, lokal-kompakte abelsche Gruppe mit

abzählbarer Basis. Ferner sei (pt) t> 0 eine Faltungshalbgruppe von Massen

mit folgenden Eigenschaften :

(i) (/it) ist symmetrisch und vom lokalen Typ ;

(ii) die Halbgruppe ist transient, d.h. es existiert das Integral
00

K(f)1 pt(f)dt
0

fürjede Funktion feC0(G) mit kompaktem Träger ;

(iii) bezüglich des Haarschen Masses 0 von G besitzt das Mass k eine

nach unten halbstetige Dichte N, welche auf G \ { 0} stetig und reell ist.

Dann existiert ein translationsinvariantes, symmetrisches Garbendatum

auf G derart, dass (G, .Af ein strenger Brelot-RN ein in G \ {0 }

harmonisches Potential ist.

Aus einem Resultat von Bliedtner [8] folgt ferner

3.2. Die nicht-negativen hyperharmonischen Funktionen auf G fallen
mit den exzessiven Funktionen der gegebenen Faltungshalbgruppe zusammen.

Speziell ordnet sich die klassische Potentialtheorie in das Ergebnis von
Forst ein.

Kehren wir nun nochmals zu der eingangs erhobenen Frage nach der

Bildung von Produkten harmonischer Räume zurück. Man sieht sofort,
daß die Produkthalbgruppe ßt®kt)t>oaufx die Eigenschaften

(i) und (ii) besitzt, wenn zwei vorgegebene Faltungshalbgruppen (p,)t>0
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und (i4)t>o auf den Gruppen G bzw. G' diese Eigenschaften besitzen.

Schwierigkeiten bereitet die Eigenschaft (iii).
Wir werden aber selbst in einem relativ krassen Fall sehen, daß sich auch

die Eigenschaft (iii) durch Zusatzbedingungen erhalten läßt. Es wird sich

um den Fall eines unendlichen Produktes handeln.

4. Harmonische strukturen auf T00

Wir betrachten die Kreislinie T, also den eindimensionalen Torus. Auf
der Charaktergruppe T Z sind « h> an2 mit dem Normierungsfaktor
a>0 sämtliche quadratische Formen. Jeder dieser quadratischen Formen

entspricht gemäß (19) eine symmetrische Faltungshalbgruppe t>o
vom lokalen Typ auf T. Dabei hat fiat eine stetige Dichte bezüglich des

Haar-Maßes 6 auf T (mit zu 1 normierter Gesamtmasse) :

(20) ßat — Qat @
•

Diese Dichte ist für a 1 der Wärmekern
00

(21) g,(d) Y e-tn2eike1+2 ^ e"'"2 cos nd
keZ n= 1

(ßt)t> 0 ist nichts anderes als die Faltungshalbgruppe der Brownschen

Bewegung auf T.

Wir betrachten nun auf dem unendlich-dimensionalen Torus T00

00

J! Tk, wobei jedes Tk gleich T ist, für eine zunächst beliebig gegebene
4=1 •

Folge sé (ak)keNreeller Zahlen ak>0die Faltungshalbgruppe (p;)t>0
mit

00

(22) vi ®
k= 1

' A

Auf der Charaktergruppe T00 Z(oo), d.h. auf der direkten Summe von
abzählbar unendlich vielen Kopien von Z, ergibt sich die Fourier-
Transformierte von /(f zu

(23) /C? (n) c-""n)
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mit q(n)X aknk>wobei «eZ(co) eine Folge (nk) ganzer Zahlen ist,

von denen höchstens endlich viele 7^ 0 sind, ist eine stetige quadratische

Form auf Z(o0). Daher ist Of)t>o symmetrisch und vom lokalen Typ,

also die Bedingung (i) des Forstschen Satzes erfüllt. Da T00 kompakt,

also die konstante Funktion 1 kompakten Träger besitzt und stets /if(l)
1 gilt, liegt keine transiente Halbgruppe vor. Wir gehen daher für beliebiges

A>0 zur Faltungshalbgruppe (.e~Mß1)t>0 über, die (i) und (ii) erfüllt.

Um (iii) erfüllen zu können, setzen wir
00

(24) pi $e~*>1dt.
0

Nach einem bekannten Satz der harmonischen Analyse besitzt pf genau

dann eine stetige Dichte pf bezüglich des Haar-Maßes von T00, wenn

Dies aber erweist sich als zu
00

(25) X e~tak < + co
fc= 1

äquivalent. Unter der Voraussetzung der Gültigkeit von (25) für jedes t > 0

besitzt dann das Maß pf die Dichte

00

(26) Pf J e~: dl dt
0

welche sich als nach unten halbstetig erweist. Stets ist p'f (0) +00.
Von Berg [5] wurde zunächst die Bedingung

« J1F
• "Z

fc=1V^
kurze Zeit darauf von Fuglede (unveröffentlicht)

o° 1

X "7= < + 00

It — 1 yj (Xfc

und schließlich 1977 erneut von Berg [6] die Bedingung

00 1

(27) X — < + œ
k= 1 ak

L'Enseignement mathém., t. XXV, fasc. 1-2. 2
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als hinreichend dafür erkannt, daß (25) für jedes t > 0 gilt und pf für
jedes X > 0 in T°°\{0} stetig und reell ist. Auf diese Weise erhielt Berg [5],
[6] den Satz:

4.1 Erfüllt eine Folge sé (ak)keN positiver reeller Zahlen die Bedingung

(27), so existiert auf T für jedes X > 0 ein translationsinvariantes,
symmetrisches Garbendatum für welches (7100,3tiff) ein strenger

Brelot-Raum und p^x ein striktpositives, in r°°\{0} harmonisches Potential ist.

Damit hat man mittels Produktbildung eine ganze Schar harmonischer
Strukturen $?^x auf dem unendlich-dimensionalen Torus konstruiert.
Jede dieser Strukturen kann durch den linearen „Differentialoperator"

00 d2
(28) If, £ at -~-2- -X-id

k= 1 VÜk

beschrieben werden. Bezeichnet nämlich np : T00 Tp die kanonische
Projektion von 7700 auf den p-dimensionalen Torus Tp der ersten/? 1,2,...
Koordinaten, so liegen alle Funktionen fo np mit fe C2 (Tp) im
Definitionsbereich des infinitesimalen Erzeugers Z/f von (pf),>0 und es gilt

Li(Jon} iak^-Xf.
k=l v"k

Mit distributionstheoretischen Methoden kann man, ausgehend von
(28), das Garbendatum 34?f direkt beschreiben: Es bezeichne hierzu @(Q)
für offenes Q c= T°° die Menge aller Funktionen f o np mit p e N und

/e Cco(Tp), deren Träger in Q enthalten ist. Dann gilt

Jff(ß) {heC(ß): $ hLlgdd 0 für alle g e 2) (Q)}
Tp

Dabei kann man sogar 2 0 zulassen. Allerdings ist der dann entstehende
Brelot-Raum nicht mehr streng. Dieser Zugang findet sich ebenfalls bei
Berg [5]. Analoge Resultate wurden von Bendjkov [4] mit Methoden der
Theorie der Markov-Prozesse erzielt.

5. Beziehungen zur Differentiationstheorie

Über die Theorie der harmonischen Räume hinaus werden der
Potentialtheorie durch die Betrachtung von Halbgruppen von Kernen neue
Dimensionen eröffnet. Dies soll nun noch kurz skizziert werden.
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Eine der einfachsten Faltungshalbgruppen auf R ist die Halbgruppe
(e_f)f>0 der Einheitsmassen in —t. Die zugehörigen Kerne Pt operieren
wie folgt

Ptf(x) f(x + t).

Der durch Integration entstehende (Potential-) Kern V hat also die Gestalt
00 00

Vf(x) J PJ(x)dtJ fit)
0 JC

Die supermedian genannten Funktionen bezüglich einer Halbgruppe
(Pt)t>o> d.h. diejenigen Borel-meßbaren Funktionen/> 0 mit

Ptf < / für alle t > 0,

sind im Falle dieser speziellen Halbgruppe gerade die monoton fallenden
Funktionen/> 0 auf R. Für Lebesgue-integrierbares/aufR ist Vf absolut
stetig und lim Vf (x) 0. Setzen wir noch

x-* + co

nr f~P'f /P>tf — — t > 0)

und

Df lim sup Dtf,
f-+0

so erhält man aus den klassischen Differentiationssätzen der Lebesgue-
schen Theorie:

1. Für jede supermediane Funktion u existiert der reelle Limes

(29) Du lim Dtu fast überall.
t-> o

2. Für jede Borel-meßbare Funktion /> 0 auf R mit Vf{x) < + oo
für alle x g R gilt

(30) DVf — f fast überall.
Setzt man schließlich noch

D* u sup Dtu,
r>o

so besagt das Maximallemma von Hardy-Littlewood :

3. Für jede supermediane Funktion u gilt

(^) {d*u^(X} < ——- (a > 0)
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Dabei bezeichnet lA die Indikatorfunktion einer Menge A; die linke
Seite der Ungleichung (31) ist das Lebesgue-Maß der Menge

{y gR: D* u(y) > a} n [x, + oo [.

„Fast überall" heißt stets bis auf eine Borel-Menge A vom Lebesgue-
Maß Null. Hiermit äquivalent ist aber die Forderung

(32) VlA(x) 0 für alle x eR.

Interpretiert man in den Aussagen 1 und 2 fast überall im Sinne von
(32), so bekommen die Aussagen 1—3 einen Sinn für beliebige Halbgruppen
(Pt)t>o von Kernen auf einem Meßraum.

Es ist höchst bemerkenswert, daß die Aussagen 1—3 nahezu ohne

Zusatzbedingungen für sub-Markovsche Halbgruppen (Pt)t>o au^ einem

Meßraum von Mokobodzki [25], [26] bewiesen werden konnten. Man muß

eigentlich nur voraussetzen, daß die cr-Algebra des Meßraumes von den

exzessiven Funktionen der Halbgruppe erzeugt wird. Dies ist in unserem

eingangs gewählten Beispiel der Fall.

6. Ausblick: Resolventen in der Potentialtheorie

Häufig — ein typisches Beispiel hierfür ist der Beweis des Satzes 2.1 —
gelangt man zu einer Halbgruppe (Pt)t>0 von Kernen nur auf dem Umweg
über deren Resolvente (Vf)x>0, wobei Vx den Kern,

00

(33) Vx \e~xt ?tdt,
0

also die Laplace-Transformierte von (Pt)t>o bezeichnet. Es ist der Satz

von Hille-Yosida, der von einer Resolvente, d.h. genauer von einer der

Resolventengleichung

(34) Vx- Vß + (2-ix) Vk 0 (2, n > 0)

genügenden Familie (VÄ)Ä>0 von Kernen zu einer zugehörigen, unter

geeigneten Zusatzvoraussetzungen eindeutig bestimmten Halbgruppe

(Pt)t> o von Kernen führt. (Vgl. Meyer [24].)

Außerdem ist es selbst bei gegebener Halbgruppe (Pt)t>o oft nur auf
dem Umweg über die Resolvente möglich, gewisse Eigenschaften
nachzuweisen. Ist beispielsweise (Pt)t>o eine Fellersche Halbgruppe auf einem

lokal-kompakten Raum X mit abzählbarer Basis, so läßt sich die Exzessivi-
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tät einer Borel-meßbaren Funktion u > 0 auf X durch die zur Definition
äquivalente Bedingung

(35) sup X VÀu — u
x> o

für die Resolvente nachweisen.

Dies hat zur Folge, daß der explizite Gebrauch der Halbgruppe oft
unnötig und Sätze gleich in der Sprache der Resolventen formuliert und
bewiesen werden können. Häufig wird hierdurch größere Allgemeinheit
erzielt, nämlich dann, wenn keine zugehörige Halbgruppe existiert. Ein
Beispiel sind die Sätze von Mokobodzki des letzten Abschnitts, welche in
[25], [26] gleich in der Sprache der Resolventen formuliert werden. Auch
die Untersuchungen von Cornea-Licea [14] sind in diesem Licht zu sehen.

Resolventen treten auch bei hyperbolischen linearen Differentialgleichungen

zweiter Ordnung auf — allerdings muß man dabei auf die
Positivität der Kerne verzichten. Ritter [27] (vgl. auch [16]) hat nämlich
gezeigt, daß für große Klassen solcher Differentialgleichungen der durch
die Fundamentallösung definierte Kern in eine Resolvente reeller Kerne
aufgelöst werden kann. Hierdurch dürfte es möglich werden,
potentialtheoretische Methoden auch in das Gebiet der hyperbolischen Differentialgleichungen

eindringen zu lassen. Das Gebiet der parabolischen Differentialgleichungen

wurde potentialtheoretischen Methoden bereits durch den
allgemeinen Begriff des harmonischen Raumes erschlossen (vgl. [1] und
[13]).
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