
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES OUVERTS AFFINES D'UN SCHÉMA AFFINE

Autor: Arezzo, Domenico / Ramella, Luciana

DOI: https://doi.org/10.5169/seals-50386

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-50386
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SUR LES OUVERTS AFFINES D'UN SCHÉMA AFFINE ')

par Domenico Arezzo et Luciana Ramella

M. Nagata, dans [8], a démontré que si est une variété affine et F est

un fermé de Xlocalementprincipal, alors - est affine, et il a donné un

exemple de variété (normale de dimension 3) ayant un fermé irréductible

de codimension 1 dont le complémentaire n'est pas affine.

En utilisant des méthodes cohomologiques, R. Hartshorne a étendu le

résultat de M. Nagata aux schémas affines X (cfr. [7]).

Dans [2], M. Beltrametti et F. Odetti prouvent que si X est localement

semi-factoriel, X -Fest un ouvert affine si et seulement si F a la codimension

pure 1.

Dans la première section de ce travail, nous reprenons le concept de

transformé d'un idéal, introduit et utilisé par M. Nagata dans [8], et nous

étudions ses propriétés géométriques; en particulier, nous l'employons

pour exprimer une caractérisation de la propriété S2 (prop. 1.7).

En utilisant cette caractérisation et en étendant aux schémas affines les

propriétés du transformé démontrées par M. Nagata pour les variétés sur

un corps (prop. 2.5), nous retrouvons la condition suffisante de R.

Hartshorne, et nous prouvons, dans l'hypothèse que la normalisation X* de X
soit un schéma noethérien, que le complémentaire d'un ouvert affine est

nécessairement pur de codimension 1 (prop. 2.11.).

Dans la dernière section, nous étudions les anneaux intègres ayant la

propriété que tout idéal premier de hauteur 1 soit le radical d'un idéal

principal (propriété (ß))et caractérisons les ouverts affines d'un schéma

affine à normalisé nothérien et ayant localement la propriété comme
les complémentaires des fermés de codimension pure 1 (prop. 3.9.).

Ce résultat généralise le résultat de M. Beltrametti et F. Odetti; la

prop. 3.10. permet en elïet de construire une classe d'exemples d'anneaux

intègres ayant la propriété ß)mais non la propriété S2, et donc aussi une

l) Travail exécuté dans la sphère d'activité de la section n° 3 du Group National
Structures Algébriques et Géométriques et leurs applications du C.N.R.
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classe d'exemples d'anneaux ayant localement la propriété (ß) mais non
intégralement clos.

Dans tout le travail, nous noterons par D un anneau commutatif à

élément unité intègre et par K son corps des fractions.

1. Généralités sur le transformé d'un idéal

Dans cette section nous rappelons la définition et les principales
propriétés du transformé d'un idéal a de D, que nous utiliserons par la suite;

pour des indications plus complètes sur les propriétés du transformé,
voir [4], [9] ou [10].

Définition 1.1. Le transformé d'un idéal a de D est l'overring de D 1}

défini par

T (a) U (D : an) { x e K | il existe ne N avec xa11 s D }
«eN

Proposition 1.2. On a les faits suivants :

a) T ((a)) Da si a ^ 0 (en particulier T (D) D) ,T ((0)) K.

b) Si il existe a g N avec a" £ b, T (a) 3 T (b).

c) Pour tout n e N, T (a) T (an).

d) Si ^ est de type fini, T (a) T (y'a).

e) Si y/ a est de type fini et si il existe ce D avec y/a y/ (c), alors

aT (a) T (a).

f) T(ah) T(anb) => r(a) + T(b) T(a + b) T(a) n T(b).

g) Si a (aj,..., an), T(a) n Da..
i= 1

h) Si T (b) D ou T (b) K, T(ab) T(a) + T(b).

Preuve. Chaque affirmation est conséquence immédiate de la
définition et des affirmations précédents.

Théorème 1.3. Soient a un idéal et D' un overring de D avec D ^ D'

ç 7"(a). Alors l'application canonique Spec D' Spec D induit un

^ Un overring de D est un anneau contenant D et contenu dans K.



— 315 —

isomorphisme (p (pour la relation d'inclusion) de l'ensemble des idéaux

premiers de D' ne contenant pas aD' sur l'ensemble des idéaux premiers

de D ne contenant pas a. En outre, si p (p (p')> on a D'v> Dp.

Preuve. Cfr. [8] ou [9].

Proposition 1.4. Soit { pa} la famille des idéaux premiers de D ne

contenant pas a. Alors T(a) <= n Dp ; en outre, si a est de type fini,
a a

on a l'égalité.

Preuve. Si p $ a, soit x e a et x £ p ; on a alors T (a) S T ((x)) Dx

ç Dç, d'où la première affirmation. La seconde est évident si a est principal

et ainsi elle découle de la prop. 1.2. g).

Remarque 1.5. Si l'idéal a n'est pas de type fini, on peut avoir r(a)
t^ nDp ; soit pour exemple V un anneau de valuation non discrète de

et a

rang 1 du type V k + m avec k corps et nt idéal maximal de V; soit

en outre D F + m où F est un sous-corps propre de k. On a alors

T(m) V (cfr. [1], cor. 3.8.), qui ne peut pas être intersection de

localisations de D, les uniques localisations de D étant D et K.

La proposition suivante permet une interprétation géométrique du

transformé d'un idéal.

Proposition 1.6. Soient a un idéal de type fini de D, X Spec D
et U l'ouvert de X défini par a. Alors T(a) r(U,(9f).

Preuve. Comme D est intègre, on a T (U, 0X) f| F> (cfr. [5],
p$ct

1.8.5.1.); la proposition résulte donc de la prop. 1.4.

Une autre propriété géométrique du transformé est exprimée par la

Proposition 1.7. Si D est noethérien, alors T(a) D pour tout
idéal a de hauteur > 2 si et seulement si D a la propriété S2-

Preuve. Si pour tout idéal a de hauteur > 2 on a T (a) — D, l'homo-
morphisme D r (X, 0X) -» r (U, 0X) T(a), où X Spec D et U
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est l'ouvert de X défini par a, est bijectif, c'est-à-dire D a la propriété S2

(cfr. [6], 21.13.4.). Réciproquement, si D a la propriété S2 et h (a) >2,
on a r(û) Ç n A> D-

MP) =1

2. Sur la condition ar(a) T(a)

Dans cette section on étudie la condition aT (a) T (a). En particulier,
on prouve que pour les idéaux de type fini elle est une propriété locale

(prop. 2.3.) et que les idéaux qui la vérifient sont exactement ceux qui
définissent dans X Spec D les ouverts affines (théor. 2.6.), ce qui met en
évidence l'aspect géométrique de la condition même. On retrouve ainsi,

comme corollaire, le fait bien connu que les ouverts d'une courbe affine

sont tous affines (rém. 2.9.). La section termine avec la démonstration

que, si la clôture intégrale D* de D est noethérienne, la condition aT (a)
T (a) peut être vérifiée seulement par les idéaux pseudopurs de hauteur

1 (prop. 2.11).

Rappelons d'abord un résultat dû à M. Nagata (cfr. [9]).

Lemme 2.1. Soient a un idéal de type fini et J un overring plat de D.
Alors on a T (a/) T (a) /.

Remarque 2.2. R. Gilmer et J. Huckaba, dans [4], ont montré avec

un exemple que l'hypothèse que l'idéal a soit de type fini est essentiel dans

le lemme 2.1.

Proposition 2.3. Si a est un idéal de type fini de D, les propriétés
suivantes sont équivalentes :

a) aT (a) T(a);

b) cfT(a/) T(aJ) pour tout overring plat J de D;

c) aT (aZ>m) T (q/>m) pour tout idéal maximal m de D.

*) Un idéal a est dit pseudopur si les idéaux premiers minimaux de a ont tous la
même hauteur.
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Preuve. Il résulte du lemme 2.1. que a) => b), et l'implication b) => c)

est évidente. Pour prouver que c) entraîne a), rappelons que si F est un

sous-D-module de K on a F n Fm où l'intersection est étendue à tous

les idéaux maximaux de D, et que Fm FDm; on a donc

T(a) n T(a) Dm n r(aDm) n ar(aDm)

na7 (a) Dm aT (a)

Corollaire 2.4. Si D est noethérien et a est un idéal de D tel que,

powr tout idéal maximal m Je D, ^/a est /e radical d'un idéalprincipal,
alors aT (a) T (a).

Preuve. En effet, il résulte de la prop. 1.2. e) que la condition c) de la

prop. 2.3. est vérifiée.

Proposition 2.5. Soient a un idéal et D' un overring noethérien de D
contenu dans T{a). Soient en outre X Spec D, X' Spec D', U l'ouvert
de X défini par a et U' l'ouvert de X' défini par aD'. On a alors un

isomorphisme canonique entre (U

Preuve. L'immersion D D' induit un morphisme canonique de

schémas (/, 9): (X',6)x>) -> (Z, d)x). D'après le théorème 1.3., la
restriction de/à [/' est une bijection entre U' et U, donc, pour prouver que/
est un homéomorphisme entre U' et U, montrons que si V est une partie
fermée de U', / (V) est une partie fermée de U. On peut supposer que V
soit irréductible et définie par un élément de U'; en effet, si V V(fi) n £/',
avec b idéal de D' et si p1? p„ sont les idéaux premiers minimaux de b,

on a

V —û (F (pj) n
i 1

et en outre V(yn U' ^ 0 si et seulement si pf e U'.
Soit donc V { p' e £/' | pr ^ q' } avec q' e U' et prouvons que

/(F) {pet/|p 2 q'nD}.
Soit p e {/ tel que p 2 q' n D;ilexiste p' e U' tel que p / (p')
p' n Det d'après le théorème 1.3. on a D'p, s D'q,nD Z»'q, ;

il en résulte que p' 2 q', donc p e / (F). L'autre inclusion est évidente.
La conclusion résulte alors de [5] 1.4.2.
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Théorème 2.6. Soient D un anneau intègre noethérien, a un idéal de D
et U l'ouvert de X Spec D défini par a. Alors les conditions suivantes
sont équivalentes :

a) oT(a) T(a).

b) Le schéma (U,0Xj^) est affine.

c) Il y a un isomorphisme canonique entre les schémas (U,(9X(ï7) et

(SpecT (a), T(a)~).

Preuve. Si 1 e T (a), il existe ne N tel que 1 e aa~", où a~n {x
£ K | xan ^ D}; alors, dit D' D [a~w], on a aD' D' et D' est un
overring noethérien de D contenu dans r(a); donc, d'après la prop. 2.5.

on a (£/, @X\U) (Spec D', D'). Cela prouve que a) => b). Le fait que
b) => c) résulte de la prop. 1.6. Enfin, si c) est vrai, T(a) est noethérien,
Spec T (a) étant un sous-schéma du schéma noethérien Spec D; on a donc,
d'après la prop. 2.4., un homéomorphisme canonique entre Spec T (a)
et l'ouvert de Spec T (a) défini par aT(a); mais ceci prouve que la partie
fermée de Spec T (a) défini par aT (a) est vide et on en conclut que l'on a

oT(a) T (a).

Remarque 2.7. L'hypothèse que D soit noethérien est essentiel dans
le théorème 2.6. En effet, si D est un anneau de valuation non discrète
de rang 2 dont l'idéal maximal rrt est tel que m m2, (0) ç p ç m est

la chaîne de ses idéaux premiers et fe m — p, l'ouvert Spec D — V (rrt)
Spec Df est affine, même si l'on a T{m) D (puisque m m2) et donc

mT (m) ^ T(m).

Corollaire 2.8. Supposons D noethérien et soit a un idéal de D
tel que est localement radical d'idéaux principaux. Alors l'ouvert Ua de

X Spec D défini par a est affine.

Preuve. Cela résulte aussitôt du coroll. 2.4. et du théor. 2.6.

Remarque 2.9. La condition suffisante du corollaire 2.8. étant vérifiée

pour tout idéal si dim D 1, on retrouve le fait bien connu que les ouverts
des courbes affines sont tous affines.
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Remarque 2.10. Le corollaire 2.8. avait déjà été démontré par R. Hart-

shorne dans [7], en utilisant des méthodes de cohomologie locale.

Nous donnons maintenant une condition nécessaire pour que un idéal

d'un anneau D à clôture intégrale noethérienne définisse dans Spec D

un ouvert affine.

Proposition 2.11. Soient D un anneau intègre noethérien dont la

clôture intégrale est aussi noethérienne et a un idéal de D tel que aT (a)

; T(a). Alors a est pseudopur de hauteur 1.

Preuve. Supposons d'abord que D soit intégralement clos. Soient

pl5 p„ les idéaux premiers minimaux-de a et supposons qu'on ait
n

A(pt)> 2. Soit/e fi Vi, f tV t(si 1); on a alors T(aDf)
i=2

T(JaDf) T(v1Df) et h (aDf) > 2; donc, d'après la proposition 1.7.,

T(aDf) Df et alors aT(aDf) # T (aDf), en contradiction avec la

proposition 2.3.

Dans le cas général, soient D* la clôture intégrale de D et cp : Spec D*

- Spec D le morphisme canonique. Comme aT (a) T (a), l'ouvert
U Spec D - V (a) est affine (théor. 2.6.) et ainsi, comme q> est un
morphisme affine, l'ouvert U* Spec D* — V(aD*) cp'1 (U) est affine

dans Spec D* il s'ensuit que aD* est pseudopur de hauteur 1, D* étant

noethérien et intégralement clos. Soit maintenant p un idéal premier minimal
de a; comme les idéaux premiers de D* au-dessus de p sont premiers
minimaux de aD* et ceux-ci ont tous hauteur 1, p a hauteur 1.

Remarque 2.12. Il résulte de la prop. 2.11. et du théor. 2.6. que si D
est un anneau noethérien dont la clôture intégrale est aussi noethérienne, les

idéaux de hauteur > 2 ne peuvent pas définir des ouverts affines dans

Spec D. Si l'anneau (D, m) est locale de dimension > 2, Spec D - { m }
ne peut pas être affine. En effet, si D est intégralement clos, d'après la

prop. 1.7. on a T(m) D et ainsi mT(xn) ^ T (m). Dans le cas général,
soient D* la clôture intégrale de D et cp : Spec D* -» Spec D le morphisme
affine canonique; alors, si Spec D - { m } est affine, il en est de même de

Spec D* - V(rrtD*) cp'1 (Spec D - { m }), ce qui est absurde.
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3. Propriété (ß) et ouverts affines

Dans cette section nous démontrons une condition suffisante pour
caractériser les ouverts affines d'un schéma affine noethérien X comme les
complémentaires des parties fermées de codimension pure 1. (ß) désignant
la propriété que tout idéal premier de hauteur 1 soit le radical d'un idéal
principal, la condition est que l'anneau intègre D ait localement la
propriété (ß). Cette dernière hypothèse coïncide avec la semi-factorialité locale
si D est un anneau de Krull (prop. 3.4.), mais elle est en général plus faible,
comme le montre la remarque 3.11., qui donne un exemple d'une classe
d'anneaux ayant la propriété (ß) mais non la propriété S2. Le travail se

termine par un exemple d'un anneau ayant les propriétés (ß) et S2, mais
non intégralement clos (ex. 3.12).

Définition 3.1. On dit que D a la propriété (a) (respect. (/?)) si tout
idéal premier de hauteur 1 de D a une puissance symbolique principale
(respect, est le radical d'un idéal principal).

Si D est un anneau de Krull, la propriété (a) coïncide avec la semi-
factorialité; si D est noethérien, la propriété (ß) coïncide avec la propriété
C2FD étudié par E. Stagnaro dans [11].

Remarque 3.2. Si D a un seul idéal premier de hauteur 1 p, par exemple
si D est un anneau de valuation ou un anneau intègre quasi-local de dimension

1, et si 0 # x e p, on a Ijx) p, et ainsi D a la propriété (ß).

Lemme 3.3. Si D est noethérien, D a la propriété (ß) si et seulement
si le radical de tout idéal pseudopur de hauteur 1 est le radical d'un idéal
principal.

Preuve. Soient a un idéal pseudopur de hauteur 1 et pl5..., pn ses

idéaux premiers minimaux; alors, pour tout i 1,...,«, il existe cte D
n

avec Vi -J (e;) et ainsi, si cH ch on a yf/c)
i=l

Il est clair que la propriété (a) entraîne la propriété (/?), mais l'inverse
est en général faux. En effet, si BkY]/(X2- Y3) k [x,y] et
D Bo>D a la propriété (/?), d'après la remarque 3.2., mais on voit
facilement qu'il n'a pas la propriété (a). Toutefois le fait suivant est bien
connu.
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Proposition 3.4. Dans un anneau de Krull É>, la propriété (a) est

équivalent à la propriété (ß).

Preuve. Soit p un idéal premier de hauteur 1 de D et soit p / (c).

Comme Dp est un DVR, il existe ne N avec cDp pnDp. On voit alors

facilement que l'on a p(n) (c).

On a alors: D factoriel => D semi-factoriel => D a la propriété (a)

=> D a la propriété (/?); il est bien connu (cfr. par exemple [11]) que si D

est un anneau du type C [X, 7]/p ayant la propriété (/?), il est factoriel.

Proposition 3.5. Si D a la propriété (ß) et si S est une partie
multiplicative de D, alors Ds a la propriété (ß).

Preuve. Tout idéal premier de hauteur 1 de Ds est du type pDs avec

p idéal premier de hauteur 1 de D. Si p (c), on a pZ>s yjcDs.

Corollaire 3.6. Les propriétés suivantes sont équivalentes :

a) Dp a la propriété (ß) pour tout idéal premier p ;

b) Dm a la propriété (ß) pour tout idéal maximal va.

Définition 3.7. On dit que D a localement la propriété (ß) (ou qu'il
est localement (ß)) si, pour tout idéal maximal rrt de D, Dm a la propriété
(/D-

Il résulte de la définition et de la prop. 3.5. que si D a la propriété (ß)

il l'a aussi localement. L'inverse, toutefois, est faux en général, comme il
est montré par le suivant

Exemple 3.8. Soit D C [X, Y]/(X2- Y3); alors D est localement
(/?), puisque il a dimension 1, mais il n'est pas factoriel, et par suite il n'a

pas la propriété (/?).

Dans ce qui suit, nous supposerons que D soit noethérien et que soit
X Spec D.

Il est clair que si a est un idéal de D et F est le fermé de X défini par a,

alors y/a est le radical d'un idéal principal si et seulement si X — F est

un ouvert affine principal, et y/a est localement radical d'idéaux principaux
si et seulement si l'ouvert X - F est localement principal, auquel cas
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X F est affine. 11 peut toutefois y avoir des ouverts affines non localement
principaux. Si par exemple X est le cône affine projetant la cubique
elliptique plane projective sur C, r, si P est un point de r dont aucun multiple
n'est intersection complète et si F est la droite qui projette P, il est bien
connu que X — F est un ouvert affine non localement principal.

Le sens géométrique des propriétés «(ß)» et «localement (ß)» est
clarifié par les remarques suivantes : j

a) D a la propriété (ß) si et seulement si les ouverts de X définis par idéaux j

pseudopurs de hauteur 1 sont exactement les idéaux principaux; 1

b) D est localement (ß) si et seulement si les ouverts de X définis par les I

idéaux pseudopurs de hauteur 1 sont exactement les ouverts localement
principaux.

Proposition 3.9. Soient D un anneau intègre localement (ß), a un
idéal de D et considérons les conditions

a) le fermé V (a) est pur de codimension 1 ;
1

b) l'ouvert Ua est localement principal ;
c) l'ouvert Ua est affine.

On a alors a) o b) => c). En outre, si la clôture intégrale Z>* de D j

est noethérienne, les trois conditions sont équivalentes. |

Preuve. L'équivalence des deux premières conditions est claire, et il j

résulte du coroll. 2.8. que b) => c). Si D* est noethérien et Ua est affine, j

on a, d'après le théor. 2.6., ar(a) T(a), ce qui entraîne (prop. 2.11.)
que a est pseudopur de hauteur 1. Donc c) => a).

La proposition 3.9. généralise la prop. 2. de [2], qui affirme que si D
est localement semi-factoriel, les ouverts affines de X sont exactement les
complémentaires des fermés de codimension pure 1. En effet, comme nous
avons vu, la condition « localement semi-factoriel » est plus forte de notre
« localement (ß) ». Des exemples d'anneaux intègres non localement semi-
factoriels mais localement (ß) sont tous les anneaux intègres de dimension 1

non intégralement clos; mais on a aussi des classes d'exemples en dimension
plus haute; pour le voir, démontrons la

Proposition 3.10. Soit D un anneau intègre dont la clôture intégrale
D* est localement (ß). Supposons en outre que
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a) le conducteur rrt0 de D dans Z)* soit un idéal maximal de hauteur > 2

dans D ;

b) il existe un seul idéal maximal m* de D* au-dessus de m0 ;
d*

c) il existe ne N tel que (y/m0)n Ç D toujours vrai si D* est noethé-

rien). Alors D est localement (ß).

Preuve. Remarquons en premier lieu que les hypothèses indiquées

entraînent la bijectivité de l'application canonique de Spec Z)* en Spec D.

Or, si m est un idéal maximal de D et m* est le seul idéal maximal de Z)*

au-dessus de ru, on a D*m* D*m (cfr. [3], ch. V, § 2, prop. 2); en outre, si

m # m0, on a Dm D*m*, donc Dm a la propriété (ß).

Soient donc m m0, p un idéal premier de hauteur 1 de Z) contenu
dans ut et p* le seul idéal premier de Z)* (nécessairement de hauteur 1)

tel que p* n D p. Alors on a y/v~D*m p*Z)*; mais D*m Z)^* a

la propriété (ß), donc il existe/ e p* tel que p*Z)^ yffD*. L'hypothèse

c) entraîne que fn e D. Montrons que pZ)m yj fnDm en montrant que
pZ>m est l'unique idéal premier de hauteur 1 de Dm contenant fn.

En effet, si q Dm est un autre idéal premier de hauteur 1 de Dm contenant

fn et si q* est le seul idéal premier de D* au-dessus de q, on a/"eq*;
donc /eq*, p*Z)*n Jf D*m <= q *Detq D*m # D*m, puisque q s m
et ainsi q* ç m*. Alors, comme h (p*Z>^) A (q*Z>^), on a q*Z)^

p*Z)^; donc q* p* et q p.

Remarque 3.11. Si Z) est un anneau intègre noethérien vérifiant les

conditions de la proposition précédente, D a la propriété Rt; en effet,
si p est un idéal premier de hauteur 1 de Z) et p* est le seul idéal premier
de Z)* au-dessus de p, on a Dp Z)** et ce dernier anneau est un DVR,
puisque Z)* est un anneau de Krull. On en déduit que, si D n'est pas
intégralement clos, D n'est pas S2l donc tout anneau intègre local non
intégralement clos vérifiant les conditions de la prop. 3.10. constitue un exemple
d'anneau intègre ayant la propriété (ß) mais non S2, ce qui répond
négativement à une question posée par E. Stagnaro dans [11].

Exemple 3.12. Soit D k [X, XY, Y2, Y3]- alors la clôture
intégrale de D est D* k [X, Y], et le conducteur de D en D* est

m0 (X,XY,Y2, Y3) D (X, Y2) D*. Alors le seul idéal maximal
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de D*au-dessus de m0 est (X, Y) Det (^mj2 ((X, Y) <=

donc, d'après la prop. 3.10., D est localement (ß), mais il n'est pas

Exemple 3.13. L'anneau BR [X, Y]/(X2+Y2) vérifie les conditions

du corollaire 4.7. de [12], et ainsi l'anneau intègre [r] a
les propriétés (ß) et S2, mais il n'est pas intégralement clos.
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