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SUR LES OUVERTS AFFINES D’UN SCHEMA AFFINE ')

par Domenico AREZZO et Luciana RAMELLA

M. Nagata, dans [8], a démontré que si X est une variété affine et F est
un fermé de X localement principal, alors X — F est affine, et il a donné un
exemple de variété (normale de dimension 3) ayant un fermé irréductible
de codimension 1 dont le complémentaire n’est pas affine.

En utilisant des méthodes cohomologiques, R. Hartshorne a étendu le
résultat de M. Nagata aux schémas affines X (cfr. [7]).

Dans [2], M. Beltrametti et F. Odetti prouvent que si X est localement
semi-factoriel, X — F est un ouvert affine si et seulement si F a la codimen-
sion pure 1.

Dans la premiére section de ce travail, nous reprenons le concept de
transformé d’un idéal, introduit et utilisé par M. Nagata dans [8], et nous
étudions ses propriétés géométriques; en particulier, nous I'employons
pour exprimer une caractérisation de la propriété S, (prop. 1.7).

En utilisant cette caractérisation et en étendant aux schémas affines les
propriétés du transformé démontrées par M. Nagata pour les variétés sur
un corps (prop. 2.5), nous retrouvons la condition suffisante de R. Hart-
shorne, et nous prouvons, dans I’hypothése que la normalisation X* de X
soit un schéma noethérien, que le complémentaire d’'un ouvert affine est
nécessairement pur de codimension 1 (prop. 2.11.).

Dans la derniére section, nous étudions les anneaux intégres ayant la
propriété que tout idéal premier de hauteur 1 soit le radical d’un ideal
principal (propriété (B)) et caractérisons les ouverts affines d’un schéma
affine 4 normalisé nothérien et ayant localement la propriété () comme
les complémentaires des fermés de codimension pure 1 (prop. 3.9.).

Ce résultat généralise le résultat de M. Beltrametti et F. Odetti; la
prop. 3.10. permet en effet de construire une classe d’exemples d’anneaux
intégres ayant la propriété (f) mais non la propriété S,, et donc aussi une

1) Travail exécuté dans la sphére d’activité de la section n° 3 du Group National
Structures Algébriques et Géométriques et leurs applications du C.N.R.
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classe d’exemples d’anneaux ayant localement la propriété (8) mais non
intégralement clos.

Dans tout le travail, nous noterons par D un anneau commutatif a
élément unité intégre et par K son corps des fractions.

1. GENERALITES SUR LE TRANSFORME D’UN IDEAL

Dans cette section nous rappelons la définition et les principales pro-
priétés du transformé d’un idéal a de D, que nous utiliserons par la suite;

pour des indications plus complétes sur les propriétés du transformé,
voir [4], [9] ou [10].

‘DeFNiTION 1.1, Le transformé d’un idéal a de D est Poverring de D V) |
défini par (
Tw= U (D: a")“"{xeKlllemsteneNavecxa < D}.

neN

PrROPOSITION 1.2. On a les faits suivants :

a) T((@) = D, si a#0 (en particulier T (D) = D); T((0)) =
b) Siil existe neN avec a" < b, T(a) 2 T (b).
¢) Pour tout neN, T (a) = T(a")

d) Si \/; est de type fini, T(a) = T (\/'/ 5.

e) Si \/ a est de type fini et si il existe ce D avec \/ a= \/ (_c)—, alors
aT (a) = T (0).

) T(ab) = T(anb) 2 T(a) + T(®) 2 T(a+b) = T(a) n T (b).

) Si a=(ag.na),T(@= n D,. '

i=1

h) Si T(® = D ou T(b) = K, T(ab) = T(a) + T (B).

Preuve. Chaque affirmation est conséquence immédiate de la défi-
nition et des affirmations précédents.

THEOREME 1.3. Soient a unidéal et D' un overringde D avec D = D’
< T (a). Alors l’application canonique Spec D' — Spec D induit un

}

1) Un overring de D est un anneau contenant D et contenu dans K.
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isomorphisme @ (pour la relation d’inclusion ) de 1’ensemble des idéaux
premiers de D' ne contenant pas aD’" sur | ‘ensemble des idéaux premiers
de D ne contenant pas a. Enoutre,si p = ¢ (p), ona D', = b,

Preuve. Cfr. [8] ou [9].

PROPOSITION 1.4, Soit {p,} la famille des idéaux premiers de D ne

contenant pas a. Alors T(a) S n D, ; en outre, si a est de type fini,

a a

on a l’égalité.

Preuve. Sip D a, soit xea et x ¢ p; on a alors T(a) € T((x)) = Dy
c D, d’ou la premiére affirmation. La seconde est évident si a est principal
et ainsi elle découle de la prop. 1.2. g).

REMARQUE 1.5. Si I'idéal a n’est pas de type fini, on peut avoir T (a)

# n D, ; soit pour exemple V un anneau de valuation non discréte de
a a

rang 1 du type ¥V = k + m avec k corps et m idéal maximal de V; soit
en outre D = F + m ol F est un sous-corps propre de k. On a alors
T (m) = V (cfr. [1], cor. 3.8.), qui ne peut pas étre intersection de loca-

lisations de D, les uniques localisations de D étant D et K.

La proposition suivante permet une interprétation géométrique du
transformé d’un idéal.

PROPOSITION 1.6. Soient a wun idéal de type fini de D, X = Spec D
et U louvert de X défini par a. Alors T (a) = I' (U, Oy).

Preyve. Comme D est intégre, on a I' (U, 0x) = N D, (cfr. [3],

pa
1.8.5.1.); la proposition résulte donc de la prop. 1.4.

Une autre propriété géométrique du transformé est exprimée par la

ProrosITION 1.7. Si D est noethérien, alors T (a) = D pour tout
idéal a de hauteur > 2 si et seulement si D a la propriété S,.

Preuve. Si pour tout idéal a de hauteur >2 on a T'(a) = D, ’homo-
morphisme D =TI (X,04) - IT'(U,0x) = T(a), ou X = Spec D et U
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est ouvert de X défini par a, est bijectif, c’est-a-dire D a la propriété S,
(cfr. [6], 21.13.4.). Réciproquement, si D a la propriété S, et A (a) > 2,
onal(w)= N D,=D.

h(p) =1

2. SUR LA coNDITION a7 (a) = T (a)

Dans cette section on étudie la condition a7 (a) = T (a). En particulier,
on prouve que pour les idéaux de type fini elle est une propriété locale
(prop. 2.3.) et que les idéaux qui la vérifient sont exactement ceux qui
définissent dans X = Spec D les ouverts affines (théor. 2.6.), ce qui met en
évidence I’aspect géométrique de la condition méme. On retrouve ainsi,
comme corollaire, le fait bien connu que les ouverts d’une courbe affine |
sont tous affines (rém. 2.9.). La section termine avec la démonstration ‘
que, si la cloture intégrale D* de D est noethérienne, la condition a7 (a) .
= T (a) peut étre vérifiée seulement par les idéaux pseudopurs* de hau-
teur 1 (prop. 2.11). |

‘Rappelons d’abord un résultat dfi & M. Nagata (cfr. [9]).

LEMME 2.1. Soient a un idéal de type fini et J un overring plat de D.
Alors on a T (aJ) = T (a) J.

REMARQUE 2.2. R. Gilmer et J. Huckaba, dans [4], ont montré avec
un exemple que I’hypothése que I’idéal a soit de type fini est essentiel dans
le lemme 2.1. /

PropoOSITION 2.3. Si a est un idéal de type fini de D, les propriétés
suivantes sont équivalentes : -

a) aT (a) = T'(a);
b) aT (aJ) = T (aJ) pour tout overring plat J de D;

¢) aT (aD,) = T (aD,,) pour tout idéal maximal m de D.

1) Un idéal a est dit pseudopur si les idéaux premiers minimaux de a ont tous la
méme hauteur.
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Preuve. 1l résulte du lemme 2.1. que a) = b), et I'implication b) = c)
est évidente. Pour prouver que c) entraine a), rappelons que si F est un
“sous-D-module de K on a F = n F,, ou Dintersection est étendue a tous
les idéaux maximaux de D, et que F,, = FD,; on a donc

T =nT(@D, =nT(aD,) = nal(aD,)
= naTl (a) D,, = aT (a)

COROLLAIRE 2.4. Si D est noethérien et a est un idéal de D tel que,

pour tout idéal maximal m de D, \/ a D, est le radical d’un idéal principal,.
alors aT (a) = T (a).

Preuve. En effet, il résulte de la prop. 1.2. €) que la condition c) de la
prop. 2.3. est vérifice.

PROPOSITION 2.5. Soient a unidéal et D' un overring noethérien de D
contenu dans T (a). Soient en outre X = Spec D, X' = Spec D', U [’ouvert
de X défini par a et U’ [D'ouvert de X' défini par aD’. On a alors un
isomorphisme canonique entre (U’, Ox.y) et (U, Oxp).

Preuve. L’immersion D <_y D’ induit un morphisme canonique de
schémas (f, 0): (X', Ox) — (X, Ox). D’aprés le théoréme 1.3., la res-
triction de fa U’ est une bijection entre U’ et U, donc, pour prouver que f
est un homéomorphisme entre U’ et U, montrons que si V est une partie
fermée de U’, f (V) est une partie fermée de U. On peut supposer que V
soit irréductible et définie par un élément de U’; en effet, si V' = V (b) n U’,
avec b idéal de D’ et si py, ..., p, sont les idéaux premiers minimaux de b,
on a

nCcCs

V =

1

. (V(Pi) a U')

et en outre V' (p;) n U’ # & si et seulement si p; e U'.

Soit donc V= {p'eU’|p'2q'} avec ¢'e U’ et prouvons que
fW)={peU|lp=24qnD}.

Soit pe U tel que p 2 q' n D; il existe p'e U’ tel que p = f (p')
= p' n D et d’aprés le théoréme 1.3. ona D', = D, < D'yap = D'y ;
il en résulte que p’ =2 ¢’, donc p e £ (V). L’autre inclusion est évidente.
La conclusion résulte alors de [5] 1.4.2.
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THEOREME 2.6. Soient D un anneau intégre noethérien, a un idéal de D

et U l'ouvert de X = Spec D défini par a. Alors les conditions suivantes |

sont équivalentes :

a) aT (a) = T (a).
b) Le schéma (U, Ox|,) est affine.

¢) Il y a un isomorphisme canonique entre les schémas (U, Oxy) et

(Spec T'(a), T (a)N).

Preuve. Si 1e€T(a), il existe neN tel que leaa™, ot a™ = {x
€K|xa"< D}; alors, dit D' = D[a™"], on a aD’ = D' et D’ est un |
overring noethérien de D contenu dans 7 (a); donc, d’aprés la prop. 2.5. |

on a (U, Oy ) = (Spec D', 5'). Cela prouve que a) = b). Le fait que :
b) = c¢) résulte de la prop. 1.6. Enfin, si ¢) est vrai, 7 (a) est noethérien,

Spec T (a) étant un sous-schéma du schéma noethérien Spec D; on a donc,

d’aprés la prop. 2.4., un homéomorphisme canonique entre Spec T (a)
et Pouvert de Spec T (a) défini par a7 (a); mais ceci prouve que la partie

fermée de Spec T (a) défini par a7 (a) est vide et on en conclut que I’on a
aT (a) = T (a).

REMARQUE 2.7. L’hypothése que D soit noethérien est essentiel dans
le théoréme 2.6. En effet, si D est un anneau de valuation non discréte |
de rang 2 dont I'idéal maximal m est tel que m = m?, (0) < p < m est
la chaine de ses idéaux premiers et fem —p, Iouvert Spec D — V (m)
= Spec D est affine, méme si 'on a T (m) = D (puisque m=m?) et donc

m7T (m) # T (m).

COROLLAIRE 2.8. Supposons D noethérien et soit o un idéal de D
tel que est localement radical d’idéaux principaux. Alors l'ouvert U, de

X = Spec D défini par a est affine.

Preuve. Cela résulte aussitot du coroll. 2.4. et du théor. 2.6.

REMARQUE 2.9. La condition suffisante du corollaire 2.8. étant vérifiée
pour tout idéal si dim D = 1, on retrouve le fait bien connu que les ouverts

des courbes affines sont tous affines.

————

i
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REMARQUE 2.10. Le corollaire 2.8. avait déja été démontré par R. Hart-
shorne dans [7], en utilisant des méthodes de cohomologie locale.

Nous donnons maintenant une condition nécessaire pour que un ideéal
d’un anneau D 3 cldture intégrale noethérienne définisse dans Spec D
un ouvert affine. |

PROPOSITION 2.11. Soient D un anneau intégre noethérien dont la
cléture intégrale est aussi noethérienne et a un idéal de D tel que oT (a)
= T (a). Alors a est pseudopur de hauteur 1.

Preuve. Supposons d’abord que D soit intégralement clos. Soient
Dy, ..., P, les idéaux premiers minimaux.de a et supposons qu'on ait

h(p,) >2. Soit fe N p5 f ¢p; sin=1, f=1); on a alors T (aDy)
i=2

= T(\/ aD ;) =T (D)) eth(aDy) >2;donc, d’aprés la proposition 1.7.,
T (aD;) = D, et alors aT (aDy) # T (aD 7, en contradiction avec la
proposition 2.3.

Dans le cas général, soient D* la cloture intégrale de D et ¢: Spec D*
— Spec D le morphisme canonique. Comme aT (a) = T (a), 'ouvert
U = Spec D — V (a) est affine (théor. 2.6.) et ainsi, comme ¢ est un mor-
phisme affine, 'ouvert U* = Spec D* — V (aD*) = @~ 1 (U) est affine
dans Spec D* il s’ensuit que aD* est pseudopur de hauteur 1, D* étant
noethérien et intégralement clos. Soit maintenant p un idéal premier minimal
de a; comme les idéaux premiers de D* au-dessus de p sont premiers mini-
maux de aD* et ceux-ci ont tous hauteur 1, p a hauteur 1.

REMARQUE 2.12. 1l résulte de la prop. 2.11. et du théor. 2.6. que si D
est un anneau noethérien dont la cl6ture intégrale est aussi noethérienne, les
idéaux de hauteur > 2 ne peuvent pas définir des ouverts affines dans
Spec D. Si ’anneau (D, m) est locale de dimension >2, Spec D — {m }
ne peut pas étre affine. En effet, si D est intégralement clos, d’aprés la
prop. 1.7. on a T'(m) = D et ainsi m7 (m) # T (m). Dans le cas général,
soient D* la cloture intégrale de D et ¢: Spec D* — Spec D le morphisme
affine canonique; alors, si Spec D — { m } est affine, il en est de méme de
Spec D* — V (mD*) = ¢~ ' (Spec D — {m }), ce qui est absurde.
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3. PROPRIETE () ET OUVERTS AFFINES

Dans cette section nous démontrons une condition suffisante pour
caractériser les ouverts affines d’un schéma affine noethérien X comme les
complémentaires des parties fermées de codimension pure 1. () désignant
la propriété que tout idéal premier de hauteur 1 soit le radical d’un idéal

principal, la condition est que ’anneau intégre D ait localement la pro- |
priété (8). Cette derniére hypothése coincide avec la semi-factorialité locale :
si D est un anneau de Krull (prop. 3.4.), mais elle est en général plus faible,
comme le montre la remarque 3.11., qui donne un exemple d’une classe

d’anneaux ayant la propriété (f) mais non la propriété S,. Le travail se
termine par un exemple d’un anneau ayant les propriétés () et S,, mais
non intégralement clos (ex. 3.12).

DEFmNITION 3.1, On dit que D a la propriété () (respect. (B)) si tout

idéal premier de hauteur 1 de D a une puissance symbolique principale -

(respect. est le radical d’un idéal principal).

Si D est un anneau de Krull, la propriété («) coincide avec la semi-
factorialité; si D est noethérien, la propriété (8) coincide avec la propriété
C,FD étudié par E. Stagnaro dans [11].

REMARQUE 3.2. Si D a un seul idéal premier de hauteur 1 p, par exemple
si D est un anneau de valuation ou un anneau intégre quasi-local de dimen-

sionl,etsi0 # xep,ona ./ (x) = p,etainsi D a la propriété (B).

LemME 3.3. Si D est noethérien, D a la propriété (B) si et seulement

si le radical de tout idéal pseudopur de hauteur 1 est le radical d’un idéal

principal.

Preuve. Soient a un idéal pseudopur de hauteur 1 et py, ..., p, ses
idéaux premiers minimaux; alors, pour tout i = 1,...,n, il existe c;e D

— n P—
avec p; = \/(ci) et ainsi, sic = [[ ¢;, on a \/a =/ (¢).
i=1

I est clair que la propriété («) entraine la propriété (), mais I’inverse
est en général faux. En effet, si B = k [X, Y]/(X*>—Y3) = k[x,y] et
D = B, ;y, D a la propriété (), d’aprés la remarque 3.2., mais on voit
facilement qu’il n’a pas la propriété («). Toutefois le fait suivant est bien
connu.
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PROPOSITION 3.4. Dans un anneau de Krull D, la propriété () est
squivalent a la propriété (B).

- Preuve. Soit p un idéal premier de hauteur 1 de D et soit p = \/ (o).
Comme D, est un DVR, il existe ne N avec ¢D, = p"D,. On voit alors
facilement que 'on a p™ = (¢).

On a alors: D factoriel == D semi-factoriel = D a la propriété («)
= D a la propriété (B); il est bien connu (cfr. par exemple [11]) que si D
est un anneau du type C [X, Y]/p ayant la propriété (B), il est factoriel.

PROPOSITION 3.5. Si D a la propriété (B) etsi S est une partie multi-
plicative de D, alors Dy a la propriété (f).

Preuve. Tout idéal premier de hauteur 1 de D est du type p D, avec
p idéal premier de hauteur 1 de D. Sip = \/ (¢c),onapD, = \/ cD,.

COROLLAIRE 3.6. Les propriétés suivantes sont équivalentes :

a) D, ala propriété (B) pour tout idéal premier p;
b) D, a la propriété (B) pour tout idéal maximal m.

DEFINITION 3.7. On dit que D a localement la propriété (f) (ou qu’il
est localement (B)) si, pour tout idéal maximal m de D, D a la propriété
(B)-

Il résulte de la définition et de la prop. 3.5. que si D a la propriété (f)
il I’a aussi localement. L’inverse, toutefois, est faux en général, comme il
est montré par le suivant

ExeMpLE 3.8. Soit D = C[X, Y]/(X?>— Y?3); alors D est localement
(B), puisque il a dimension 1, mais il n’est pas factoriel, et par suite il n’a
pas la propriété (p).

Dans ce qui suit, nous supposerons que D soit noethérien et que soit
X = Spec D.

Il est clair que si a est un idéal de D et F est le fermé de X défini par a,
alors ./a est le radical d’un idéal principal si et seulement si X — F est

un ouvert affine principal, et \/E est localement radical d’idéaux principaux
si et seulement si 'ouvert X — F est localement principal, auquel cas
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X — Fest affine. 11 peut toutefois y avoir des ouverts affines non localement
principaux. Si par exemple X est le cone affine projetant la cubique ellip-
tique plane projective sur C, I', si P est un point de I' dont aucun multiple
n’est intersection compléte et si F est la droite qui projette P, il est bien
connu que X — F est un ouvert affine non localement principal.

Le sens géométrique des propriétés « (B)» et « localement (B) » est
clarifié par les remarques suivantes:

a) D ala propriété (B) si et seulement si les ouverts de X définis par idéaux
pseudopurs de hauteur 1 sont exactement les idéaux principaux;

b) D est localement (B) si et seulement si les ouverts de X définis par les
idéaux pseudopurs de hauteur 1 sont exactement les ouverts localement
principaux.

PROPOSITION 3.9. Soient D un anneau intégre localement B), a un
idéal de D et considérons les conditions
a) le fermé V(a) est pur de codimension 1;
b) louvert U, est localement principal ;
¢) louvert U, est affine.

On a alors a) < b) = ¢). En outre, si la cléture intégrale D* de D
est noethérienne, les trois conditions sont équivalentes.

Preuve. 1’¢quivalence des deux premiéres conditions est claire, et il
résulte du coroll. 2.8. que b) = c). Si D* est noethérien et U, est affine,
on a, d’aprés le théor. 2.6., aT (a) = T (a), ce qui entraine (prop 2.11.)
que a est pseudopur de hauteur 1. Donc c) = a).

La proposition 3.9. généralise la prop. 2. de [2], qui affirme que si D

est localement semi-factoriel, les ouverts affines de X sont exactement les

complémentaires des fermés de codimension pure 1. En effet, comme nous

avons vu, la condition « localement semi-factoriel » est plus forte de notre -

« localement () ». Des exemples d’anneaux intégres non localement semi-
factoriels mais localement () sont tous les anneaux intégres de dimension 1
non intégralement clos; mais on a aussi des classes d’exemples en dimension
plus haute; pour le voir, démontrons la

PROPOSITION 3.10. Soit D un anneau intégre dont la cléture intégrale
D* est localement (f). Supposons en outre que
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'a) le conducteur m, de D dans D* soit un idéal maximal de hauteur > 2
.~ dans D; |

b) il existe un seul idéal maximal m, de D* au-dessus de m,;

D*__
c) il existe ne N tel que (\/ m,)* < D (toujours vrai si D* est noethé-
rien). Alors D est localement (B).

Preuve. Remarquons en premier lieu que les hypothéses indiquées
entrainent la bijectivité de I’application canonique de Spec D* en Spec D.

Or, si m est un idéal maximal de D et m* est le seul idéal maximal de D*
au-dessus de m, on a D, = D, (cfr. [3], ch. V, § 2, prop. 2); en outre, si
m # m,,ona D, = D, donc D, ala propriété (f).

Soient donc m = m,, p un idéal premier de hauteur 1 de D contenu
dans m et p* le seul idéal premier de D* (nécessairement de hauteur 1)

*

tel que p*n D = p. Alors on a /pD}, = p*D*; mais D}, = Dy a
la propriété (B), donc il existe f € p* tel que p*D,, = \/7 D*. L’hypothése
c) entraine que f" € D. Montrons que pD, = \/ f"D., en montrant que
pD_ est I'unique idéal premier de hauteur 1 de D, contenant /™.

En effet, si g D, est un autre idéal premier de hauteur 1 de D, conte-
nant /" et si q* est le seul idéal premier de D* au-dessus de g, on a /" € q*;
donc feq*, p*D, = /fD}, < q*D* et q D}, # D}, puisque q & m
et ainsi q* = m*. Alors, comme A4 (p*D;) = h(q*D,), on a ¢*D,,
= p*D’ ; donc q* = p* et q = p.

REMARQUE 3.11. Si D est un anneau intégre noethérien vérifiant les
conditions de la proposition précédente, D a la propriét€ R,; en effet,
si p est un idéal premier de hauteur 1 de D et p* est le seul idéal premier
de D* au-dessus de p, ona D, = D;* et ce dernier anneau est un DVR,
puisque D* est un anneau de Krull. On en déduit que, si D n’est pas inté-
gralement clos, D n’est pas S,; donc tout anneau intégre local non inté-
gralement clos vérifiant les conditions de la prop. 3.10. constitue un exemple
d’anneau intégre ayant la propriété () mais non S,, ce qui répond néga-
tivement a une question posée par E. Stagnaro dans [11].

ExempLE 3.12. Soit D = k[X, XY, Y% Y3]; alors la cloture
intégrale de D est D* = k[X, Y], et le conducteur de D en D* est
m, = (X, XY, Y%, Y3 D = (X, Y?) D*. Alors le seul idéal maximal
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de D* au-dessus de m, est (X, Y) D* et (\/m,)? = ((X, Y) D¥)? <
donc, d’aprés la prop. 3.10., D est localement (B), mais il n’est pas S,.

EXeMPLE 3.13. L’anneau B = R[X, Y]/(X%+Y?) vérifie les condl-w
tions du corollaire 4.7. de [12], et ainsi I’anneau intégre D = B [T ]]
les propriétés () et S,, mais il n’est pas intégralement clos.
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