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2) &, est égal a la réunion des espaces &, r, s € R.

Démonstration. 1) Si fe&m*! avec me N, la proposition 3.4 montre
que f est de classe C™ sur [0, oo et que £ (0) = 0 pour 0 <j < m;
il suffit de prendre m arbitrairement grand pour obtenir f e CS" . |

Si f € Cg, la proposition 3.5 montre que f € &" quels que soient
meN et reR.

2) Si Teé,, la proposition 1.5 entraine que T = D™ (¢t %g) avec
m, qeNetgeC,. Or f =tge& et T = D" (t~@+D f) appartient 2
&_{z+1) en raison de la proposition 3.3 et de la formule de Leibniz.

4. COMPORTEMENT ASYMPTOTIQUE AU VOISINAGE DE L’ORIGINE

Soit &, la réunion des espaces &;, seR. On peut considérer que |
Iappartenance & &, ° caractérise /’ordre de grandeur d’une distribution
au voisinage de I'origine. En effet, le théoréme 3.1 montre que cette appar-
tenance est une propriété¢ du germe a I’origine; d’autre part, I’égalité &,
= 1" &, qui résulte de (2.9) et les propositions 3.4 et 3.5 montrent que
la propriété Te & ® est voisine des propriétés T'=o(t") ou T = O (¢t")
lorsque ¢ —» + 0.

Exemples. Soit y e C* (R;) une fonction & support borné égale a 1
au voisinage de 0. Posons X = My. On a X(2) = z 1 P (2), o § =
— M (Dy) est la transformée de Mellin d’une fonction de 2 (R.) (voir le
théoréme 3.1 pour les propriétés de &) et & (0) = 1. Pour peC et keN .
posons

(4.1) Ko @) = 7 (log ) 1 (1) .

On a X,,(2) =My, (2= X®(z+p), fonction méromorphe de z §§
avec un podle d’ordre £k + 1 en — p, de partie principale (—1)* k!
(z+p)~%** Y, De plus, si le support de x est contenu dans 10, a], quel que
soit m € N,

(42) (A+|z)" @+ p)**' X, (2) a R = est. borné pour Rez > —m .

Etant donné s réel, on a y, ; € &, si et seulement si Re p > r.
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DEVELOPPEMENTS ASYMPTOTIQUES. Donnons-nous une suite (p;) de
nombres complexes distincts telle que Rep; — + oo lorsque j— oo et
une suite (m;) de N.

Pour tout r e R, soit J (r) = {(j, k) eN?; Rep; <r, 0 <k <mj;} et
soit J la réunion des J (r). |

Considérons la famille & des fonctions Xpj s (j, k) e J, avec (4.1).

DErNiTions. 1) On dit que fe &, admet un développement asympto-
tique généralisé al’ordre r (reR), par rapport & &, s’il existe des nombres
a; €C, (J, k) e J(r) tels que la différence

(43) fr = f - Z djk ij,k
(k) e J(r)
appartienne a &, *.

Les nombres a; , sont alors déterminés de manicre unique; en effet,
pour qu'une combinaison linéaire des X, pjoko (j, k) eJ(r), appartienne a un
espace A5, il faut que ses coefficients soient tous nuls.

2) On dit que f e &, admet un développement asymptotique généralisé
illimité, par rapport & %, si f admet un développement asymptotique géne-
ralisé a I’ordre r pour tout r € R.

3) Soit s € R. On dit que f € &, admet un développement asymptotique
de type &5, a lordre r(r € R), par rapport a &, s’il existe des a; 4, (j, k)
e J (r), tels que f, € &, avec (4.3).

4) On dit que f € &, admet un développement asymptotique de type
&° illimité, par rapport a &, si f satisfait a la définition 3 pour tout r € R.

5) On dit que f € &, admet un développement asymptotique illimité,
indéfiniment dérivable, par rapport & &, si f satisfait a la définition 4 pour
tout s € N.

Les propositions suivantes montrent que, sous des hypothéses conve-
nables, les développements asymptotiques généralisés sont en fait des
développements asymptotiques usuels, et réciproquement. La proposi-
tion 4.1 est une conséquence immeédiate de la proposition 3.4 et de la
remarque 2 qui suit cette proposition:

PROPOSITION 4.1. Soit meN et feé..

1) Si f admet un développement asymptotique généralisé de type &™*1,

a l’ordre r, par rapport a &, alors fe C™(R,) et il existe des nombres
complexes a; , tels que
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(4.4) SO = Y aptilogh +1,(),

(j,k)EJ(r)
avec fO () = o(t"Y) lorsque t > + 0, pour 0 <j<m.

D) Si f vérifie (4.4) avec f,e C"(Ry) et f1P (1) = O (")) lorsque |
t— + 0, pour 0 <j<m, alors f admet un développement asymptotique
généralisé de type &™, @ l’ordre r' pour tout r' < r.

La proposition suivante découle facilement de la proposition 4.1.

PROPOSITION 4.2. Pour que f € &, admette un développement asympto-
tique illimité indéfiniment dérivable, par rapport & %, il faut et il suffit
que feC”(R,) et que
(4.5) f@®~ 3 ajx t*7 (log 1)*

(jk)ed
lorsque t — + 0, développement asymptotique au sens usuel, indéfiniment
dérivable terme a terme.

L’existence d’un développement asymptotique pour une distribution f
de &. est équivalente & des propriétés de méromorphie et de croissance
pour la transformée de Mellin de /. Un exemple est fourni par la propo-
sition 4.3; (voir aussi [5], proposition 1.1, page 397, ou il est montré que,
pour des topologies naturelles, la transformation de Mellin est un isomor-
phisme vectoriel topologique de I’espace des fonctions admettant un déve-
loppement asymptotique sur ’espace de leurs transformées de Mellin).

ProOPOSITION 4.3. Soit fe&,, F=If. Pour que f admette un
développement asymptotique illimité indéfiniment dérivable, par rapport a |
F, il faut et il suffit que les conditions suivantes soient vérifiées :

a) Fest méromorphe dans C avec pole d’ordre < mj;+ 1 au point
— p; pour tout jeN.

b) 1l existe a > 0 tel que, pour tout meN, (1+|z))"F (z) a™®** soit
borné en dehors d’un compact du demi-plan Re z > — m.

Démonstration. Les conditions a) et b) sont nécessaires: Soit a > 0

" tel que les supports de f et x soient dans ]0, a], ou y est la fonction qui

intervient dans (4.1). Quel que soit me N, en prenant r = m + 1, et en
définissant /. par (4.3), on peut supposer que f,e &, donc que F, (2)
=Mf,(z) = (z+r+1)""G.(z+r) est holomorphe pour Rez > —r,
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avec G, € #. La caractérisation de # = MS au théoréme 3.2 et le lemme

1.6 montrent que (1+|z))"F, (z) a~ReZ est borné pour Rez > — m.
Comme F(z2) = Y ;X @ T F (2, F est méromorphe
‘ (J.k) e J(r)

dans Re z > — r et ses pdles sont ceux des a; X pj ko d’ou a) et b) compte
tenu de (4.2).
Les conditions a) et b) sont suffisantes: Soit
™
Y aj(=DFk!(z+p)

k=0

la partie principale de F au pdle — p;. Etant donné r € R, posons

Fr(z) = F(Z) - Z aj,kXPj,k (Z) .

(Jk)eJ(r)

Si neN, d’aprés b) pour m > max (n,r), on a que F, e i, Par trans-
formation de Mellin inverse, il s’ensuit que f, donnée par (4.3) appartient
aé,, cqfd

Application. Nous allons appliquer les résultats précédents a la fonction

(4.6) F(z) = <A™ 0) = [, (A®)IT 2(),

ou A est une fonction analytique réelle, non constante, sur une variété
analytique réelle ¥ connexe, paracompacte, de dimension z, et ¢ appartient
a l'espace @ (V) des n-formes différentielles impaires, de classe C*, a
support compact dans V. Il est clair que F est holomorphe pour Rez
> 1, puisque ’application (x, z) +> (4 (0 1 est continue, et holomorphe
par rapport 4 z, pour x € V et Rez > 1. Dans [1], en utilisant une version
du théoréme de résolution des singularités de Hironaka, Atiyah montre
que F admet un prolongement analytique méromorphe dans C. En reprenant
sa méthode, nous allons préciser le résultat.

Soit U un ouvert relativement compact de V, dans lequel 4 n’ait pas
d’autre valeur critique que la valeur 0. L’application lin€aire continue
A* 1 C* (R) » C* (U) telle que 4* § (x) = ¢ (4 (x)), donne par trans-
position une application linéaire continue 4, de & (U) dans .#, (R) I’espace
des mesures a support compact sur R, définie par { 4, P, > = { D, A% >
= [y ¥ (4 (%) ® (x), pour PP (U) et YyeC”(R). Comme dA4 # 0
dans U* = {xeU; A(x) #0}, il existe dans U* une (n—1)-forme
impaire Q de classe C® telle que @ = d4 A Qet’on a, pour ¥ € D (R*),
CAe D, YD) = [ f @OV (@) dt avec [ (1) = [ 4-1,Q (x), Uinjection de
A™1(t) n U* dans U* étant convenablement orientée. Ainsi, dans R*




— 306 —

= R\ {0}, 4,9 coincide avec la fonction f de classe C* et A4, induit une
application linéaire continue de 2 (U*) dans 2 (R*). Par dualité on obtient
donc une application linéaire continue de 2’ (R*) dans 2’ (U*) I’espace
des distributions dans U*, définie par ( 4*S,® ) = (S, 4,9 > pour
Se P (R¥) et e (U¥); A*S est I'image réciproque de S par 4. Soit
3, (A) = A*3, 'image réciproque par 4 de la mesure de Dirac 3, au point
t #0.0na

(4.7) J @ =<6,(4),P) = 4, 2(D).

ProrosiTiON 4.4. Soit U wun ouvert relativement compact de V,
dans lequel A n’ait pas d’autre valeur critique que 0. Il existe un
entier q = q(U) >1 tel que, pour toute ®e€ P (U), la fonction F -
définie par (4.6) vérifie les conditions a) et b) de la proposition 4.3, avec
p;i=—1+({+D/g et mj<n—1(jeN, n=dmV). F est la
transformée de Mellin de la fonction f donnée par (4.7); f est intégrable
et de classe C* sur R,.; lorsque t— + 0, f admet un développement
asymptotique

(4.8) f® ~ Y apt™ U DA (log 1)
(/,keN,0 <k <n — 1), indéfiniment dérivable terme a terme.

Démonstration. (Voir aussi [4]). En suivant la démarche de [1], par.
désingularisation et localisation, on se ramene au cas ou V' = R" et

F(z) = [o (2 ... x") 1o (x)dx,

avec peZR"), Q = {xeR"; x, >0,1 <k <n}, et ou les g, sont
des entiers > 0 non tous nuls.

Nous dirons qu’une fonction Fj (x4, ..., X;; z) a la propriété P, (0 <k
< n, P, est a interpréter de maniére évidente) si

1) F,e C* (R*x (C\S))), S, étant une partie fermée discréte, bornée "
supérieurement, de R.

2) Pour tout ze C\S,, x'+— F, (x'; z) est une fonction appartenant |
a C* (RY), a support dans un compact fixe de R".

3) Pour tout x'eR*, z+> F,(x';z) est méromorphe dans C avec
poles d’ordre <{n — k aux points de S,. |

4) Si k<n—1, il existe a, > 0 tel que, quels que soient oe NF,
meN, on ait | 8% F, (x';2) | < Cp (1+]|2)) ™™ ag®* pour x'eR", Rez
> — m, distance (z, S}) > 1, avec C,, > 0.



— 307 —

F, = ¢ ala propriété P,, et les propriétés a) et b) de la proposition 4.3

pour F, équivalent a la propriété P, pour F, = F, avec

={1-(j+1)g;jeN},

g entier > 0. Il suffit donc de prouver que si F,,; a la propriété P, ,
alors

/® Q0
F (x';2) = S k1D F L (x5 2) dt
0

a la propriété P,;. Or, avec les notations du début du paragraphe, la formule

de Taylor donne
n

1. . ,
Froy(x',t;2) = ) — Oke1 Fray (5,05 2) 8 x (1) + t"*1 R, (x',t; 2)

j=0

R,(x',t;2) =t~ "D (1 —x () Fry1 (X', 15 2)

1l

—S)”
+ x(t)s (—T OET Frpy (X' ts;2)ds.
0 .

On a donc, avec X = My,

u

1 .
Fp(x';z) = Z J— a}’c+1Fk+1(x,a 0;2) X (2qx41 —Q+1 +J +1)

j=0

/® 00

—i—S tlk+1(z-Dutl R,(x',t;z)dt.
0

En prenant p arbitrairement grand, on montre facilement que F, a la
propri€té¢ P, avec S;, = Sp., v {1 — (j +1)/qr+1;7€N}

Puisque F a les propriétés a) et b) de la proposition 4.3, on a F = Mg
oll ge &, est de classe C* sur R, et admet, lorsque - + 0, un déve-
loppement asymptotique du type (4.8) indéfiniment dérivable terme 3 terme;
en particulier, g (f) = o (r "' */29) Jorsque £ — + 0 et g est intégrable sur
R;. Par ailleurs, on a vu que 4,9 était une mesure 3 support compact

sur R prolongeant la fonction f con51deree sur R, ; par suite, /' € &, et pour
Rez>1,

Mf(2) = (AP, 1571 ) = [, (AX)I™ P (x) = F2) = Mg (2).
On en déduit f = g.
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