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où 0wn (-1)"-1 *w(log 0n_1 0/(« — 1) est la transformée de Mellin
inverse de la fonction z (z +w)~n.

3. Théorèmes du type de Paley-Wiener

Théorème 3.1.. Soit Fe 34?+.

1 F est la transformée de Mellin d'une distribution à support dans

[a~a] (a > 1) si et seulement si F est entière et vérifie une inégalité

(3.1) \F(z)\<C(l+ |z|)"a'R"l, zeC,

avec me N et C > 0.

2) F est la transformée de Mellin d'une fonction C°° à support dans

[fl~1,fl](«>l) si et seulement si F est entière et, pour tout me N, il existe
Cm> 0 tel que

(3.2) \F(z)\<Cm(l+ |z|)-malRezl, zeC.

Démonstration. (Voir aussi [6], pages 3 à 13, [7], théorème 16, page 272
et [3], théorème 1.7.7, page 21).

1) Soit T une distribution sur R à support dans [a~ a]. Il existe m
e N tel que T soit d'ordre < met

m

(3.3) [<T,<p>|<M £ sup | (pu) (t) I

j=0 t

pour tout cpeCm (R+), avec M>0. Soit (R+) égale à 1 au voisinage
de [a-1, a]. On a F(z)< T, Zz_1/ > et est entière. Soit e C00 (R)
nulle pour t > 3 et égale à 1 pourt<2. Posons

<PZ(0 X(0«A(i|z| a"|2|)i/r(t~|z| a~|z|)f_1.

On açi.e C00 (R), et comme 1

au voisinage du support de T,
F(z) T, <pz D'après (3.3), en majorant les dérivées de on obtient
(3.1).

Soit F entière vérifiant (3.1). On a WT avec T 9tF
(-D)m+2 öf±, où
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g±(t) t
2TZ l j y(s)

y (s) étant la droite Re z s orientée dans le sens Im z croissant, avec

+ s > 0; cela résulte de la définition de 31 si s > 0, et provient du fait que

g + — g _ est un polynôme en log t de degré < m + 1 si s < 0. L'inégalité

(3.1) entraîne

|<7±(0| <Aa^rs
lorsque | s|> 1, Aconstante > 0. En faisant tendre s vers + oo ou - oo

on obtient g+ t)0 pour t > aet g_0 pour t < a'1, de sorte

que le support de T est contenu dans [ \ a}.

2) Soit cpeS) (R+) une fonction à support dans [a~ \ a]. Il est clair

que F W(p est une fonction entière et que, pour tout entier > 0,

zkF{z)I Dk (p (t) f 1 dt <4ka|Re*1,

Ak constante positive, d'où l'inégalité (3.2).

Inversement, si F entière vérifie (3.2) pour tout N, on a fflcp,

où (p (t) —. \ t~zF(z)dz est une fonction C00, à support dans
27t i Jy(s)

[a-1, a] d'après 1), c.q.f.d.

Espaces S et Jf. Dans la suite, nous désignerons par ê le sous-

espace de L2(R+,t'1 dt) formé des fonctions à support borné, muni de la

norme
/ (* °o \ !/2

\\f\U=^o \f(t)\2rkdtj,fet.

Il est clair que S C ^+nl' (R+) n L2 (R+).

Par exemple, si / est une fonction de carré intégrable à support borné

telle que | / (0 - f(0)| < C t"lorsque -* + 0, avec et oc > 0, on

a / e S si et seulement si / (0) 0.

Le théorème suivant caractérise l'espace :// ÏM :

Théorème 3.2. Pour qu 'une fonction F soit la transformée de Mellin

d'une fonction feé" à support dans ]0, a] 0), il faut et il suffit que les

conditions suivantes soient satisfaites :
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1) F estholomorphe dans le demi-plan Re 0,

2) la fonction Fx F(x +iy)appartientà L2 (R) pour tout >0
et il existe une constante C>0telle que

Il FxI< C a*, pour tout >0.
LHR)

Siles conditions précédentes sont vérifiées, Fx tend vers une limite F0

dans L2 R)lorsque x->+ 0 et

(3.4) I FxIJin I txf!g pour tout > 0.
L2(R)

Démonstration. (Voir aussi [6], théorème 5, page 8). Soit S à

support contenu dans ]0, a], a>0.Pour x Re >0, Im z, on a
r* oo f* +00

F (z) 33t/ (z) \ / (0 tz~l dt \ avec
JO J -oo

/ (<?s) esx g0(s)esx, g0eL2 (R), g0 nulle au voisinage de + oo,

Il gx I I txf I x > 0. Autrement dit, la fonction est la transis^)

o

formée de Fourier de gxeL1 (R) nL2 (R) pour x > 0, et la formule de

Plancherel donne (3.4) pour x > 0. Comme gx -> g0 dans L2 (R) lorsque

x -* + 0, Fx tend vers une limite F0 dans 2 (R), F0 étant la transformée de

Fourier de g0; de plus, la formule (3.4) reste valable pour x 0. Enfin

1) et 2) sont vérifiés, l'inégalité de 2) avec C y/2n \f\^ résultant de

(3.4).
Soit F une fonction vérifiant 1) et 2). En vertu du lemme 1.6, pour tout

r> 0, on a | F(z)|< C(r)aRez, pour Re z > donc Soit

/ HF eS+.Si<p e Q (R : comme 3iF est limite dans Si' (R+) des

fonctions (2.7), on a

2n{f,(p}= lim C dt
J 0

Le théorème de Fubini donne, avec ^ 9Jl(p,

2n<f,(py=$<t>1„x(-y)Fx(y)dy,

d'où, par l'inégalité de Cauchy-Schwarz,

2T | < /, > | <|| &1-XIIII -f* Il

L2(R) l2(R)

Finalement, compte tenu de (3.4) valable quel que soit xe R pour/remplacé
par cp eSj (R+),
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I <f,(pyI< MI tx~x(p\gax

avec M > 0. En posant xj/ tll2~x (p il vient

\{tx-ll2f,il/y\<Max\\il,\\ x>0,
£2(R+)

pour tout (R+). Le théorème de représentation de Riesz entraîne
alors que tx~1/2 f eL2 (R+) et que

r* oo

\ (tla)2x | / (0 |2 t'1 dt < M2

pour tout x > 0. Lorsque x oo, cette inégalité implique que le support
de / est contenu dans ]0, a]; si x - +0, elle donne quefe S, c.q.f.d.

Comme application du théorème précédent, nous allons introduire
des espaces qui permettront de classer les éléments de en fonction de

leur régularité et de leur ordre de grandeur au voisinage de l'origine.

Espaces et êsr. Etant donné deux nombres réels r et s, nous
désignerons par Jf; l'ensemble des fonctions FeJ^+ telles que
(z + r + l)sF(z) G(z + r), avec G e 34? ; en particulier 34?q

34?. Ainsi, si Fe 34?sr9 F(z) est holomorphe pour Re z > — r et l'application

j; h» (x + iy +r + l)s F (x + iy)

est dans L 2 (R) pour x > — r.
On a 34?sr c ?> si et seulement si r' < r et s' < s.

Nous poserons Ssr 3Î 34?sr la transformée de Mellin inverse de 3tf&r\

en particulier Sq ê.
Dans le cas où s est un entier, on peut caractériser êsr directement:

Proposition 3.3. Soit m un entier >0 et soit TeS+.

a) Les conditions suivantes sont équivalentes :

(a.l) TgC-
(a.2) t~r Dj Te ê pour 0 < / < m.

(a.3) tj~r TU) e ê pour 0 <y < m.

b) Les conditions suivantes sont équivalentes :

(b.l) TeS;m.
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(b.2) T tr Yj fjavecfje S.
j=o

m

(b.3) r= X tr+jh(jJ) avec hjeê.
j=o

Démonstration. Compte tenu de la formule de Leibniz et de l'égalité
êsr tr Ssq, on peut supposer que r — 0. Les équivalences de (a.2) et(a.3)
ainsi que de (b.2) et (b.3) découlent du lemme 1.1.

Soit F 9JIT. On a Te £% o (z + l)m F(z) G (z) avec

o zj Fe y? pour 0 <7 < m o DJ Te S pour 0 <7 < m.
Si Teêom on a F(z) (z+l)mG(z) avec Gey?. La formule du

(m\J 91G.

m

Si T vérifie (b.2) avec r 0, on a F(z) (-z)7' SDt/y (z)
j=o

m

(1 + z)m G (z) avec G(z) £ (-z)J'(1+z)_m 2R/; (z) donc GeJf
i=o

et Tey?ôm, c.q.f.d.

L'appartenance à la réunion des espaces reR, caractérise
la régularité d'une distribution. On vérifie en effet que localement, les

éléments de sont dans l'espace de Sobolev Hs (R) formé des distri-
/v A

butions Ssur R telles que (1 + |x|2)s/2 S (x) soit de carré intégrable,
étant la transformée de Fourier de S.Nous démontrerons le résultat suivant:

Proposition 3.4. Soit s > m+ 1/2 avec N, et reR. Si f
e<C on a / e Cm (R+) et

f0)(t)o(tr~J)lorsque-» + 0

pour 0 <y < m.

Démonstration. On a (z+r+ 1)S9JÎ/ (z) G{z+r) avec G elf?.
Par suite, pour x > - r,

_ p*+*oo
/O)0) \ t~z~Jz(z + l) l)_s dz

l J jc-ïoo

fonction continue sur R+ pour 0 <j < m, donc f e Cm (R+). Comme
Gx :ye> G (x+iy)convergevers G0 dans L2 (R) lorsque x -> + 0, on
a aussi
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fO)f0 Ci C c-^,(r-Mr-iy-l)...{r-iy-J + l) Go 00° 271 _ (1 +iyy

où l'intégrale tend vers 0 lorsque t -> + 0, d'après le lemme de Riemann-

Lebesgue. Par conséquent, fU) (t) o (tr~j) lorsque t -> + 0, c.q.f.d.

Remarque 1. Si s < m + 1/2, êsr n'est pas contenu dans Cm(R+).
Soit en effet / g $'+ tel que (— D)m f soit la fonction égale à 1 sur ]0, 1[
et nulle sur [1, oo[. Il est clair que tr + 1 f n'appartient pas à Cm(R+)
bien que 3DÎ (*r+1/) (z) (z + r + l)~m_1 appartienne à pour s

< m + 1/2.

Remarque 2. Si / g Cm (R+), m > 0, et si fU) (t) O (tr~J) lorsque
t -> + 0 pour 0 <7 < m, il est clair que / g S, pour tout r' < r, puisque

fU) fr'~j hj avec hjeS (proposition 3.3). En général, on ne peut pas

remplacer r' par r: une fonction / g C00 (R+) qui est égale à | log t |~1/2

au voisinage de 0 vérifie o(t~J) lorsque t -> + 0 pour 0 <y
<m. Cependant, quel que soit .s-gR, / n'appartient pas à en effet,

9JIf (z) - Cz~1/2 (C constante ^ 0) est entière.

La proposition suivante donne des conditions pour qu'une fonction
de classe Cw_1 soit dans ê.

Proposition 3.5. Soit m un entier > 1, r g R et f e Cm 1 (R+)
à support borné telle que tm~r /(m) g g S.

a) Si r < 0, on a f e S.
b) Si r > m - 1, on a f e S si et seulement si fu) (t) -> 0 lorsque

t -» + 0 pour 0 <7 < m — 1.

c) Si 0 < r < m - 1, on a f e ê si et seulement si fU) (t) - 0

lorsque t -> + 0 pour 0 <j < r et f{r)e$ si r entier.

Démonstration. Soit F SCR / et G 2% g Jf. Par hypothèse

9Jt(/(m))(z) (-l)m (z-1) (z-2)... (z-m) F(z-m) G (z + r-m). On

a / g si et seulement si

— l)m (z + l)m G (z)
G0 (z) (z + l)m F (z — r) ^ — -(z —r) (z —r + 1) (z — r + m — 1)

est une fonction de

a) Si r < 0, il est clair que G0 g donc / g S.



— 301 —

b) Si r > m- 1, G0e Jf si et seulement si - 0 pour 0

<; < m- 1. Puisque /(m) tr~m g, on a pour 0 <y < 1

f (t-u)"-'-1 w/ (0 \ 7 :—-—ur mg(u)du
JooOn-J-1)!

m — j— 1
__

1 \m~k — j — 1

y i tk \ ur~k~j~1 g{u)du.
k=0 k\(m-k-j-1)! Joo

Mais, si « > 0, • u"-1 g (u) du - G (a) + o En effet, par l'inéga-
J 00

lité de Cauchy-Schwarz, lorsque t-*+ 0,

C u"-1 g(m) du<(m2"-1 du[(u) |2 m-1

Jo Jo Jo

Par suite

(3.5) fU)(0/ (r -j) + o (1),
(m —j — 1)

et G (r— j) 0 si et seulement si /(j) (t) o (1).

c) Si 0 <r <m — 1, G0 e si et seulement si G (r- j) 0 pour
0 <_/ < r et z~ *(? e dans le cas où est entier. Comme précédemment

l'égalité (3.5) est valable pour 0 <j < r. On a donc 0 si et

seulement si f(j> (r) o(1), avec 0 <j < r.

Dans le cas où rest entier, feêentraîne f(r> e S. Inversement, si

/(r) h eêetsi fU)t)o (1) pour 0 <J < avec > 1,

C' (t—uY"1f0)\ "7 77T
h ^ du h°

Jo (r - 1)!

i r1
où h0(t) — \ (l-s)r 1

(r — 1) ' J o

appartient à S. Il s'ensuit que F(z—r)i'i//0 (z) est dans Y(' donc aussi

G0, c.q.f.d.

Proposition 3.6. 1) L'intersection des espaces S\, r, s e R, est égale
à l'ensemble Co des fonctions C00 sur [0, oo[, à support borné, plates
en 0.
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2) S + est égal à la réunion des espaces $sr, r, s e R.

Démonstration. 1) Si fe S"2+1 avec me N, la proposition 3.4 montre
que / est de classe Cm sur [0, oo[ et que fU) (0) 0 pour 0 <7 < m;
il suffit de prendre m arbitrairement grand pour obtenir / e Cq.

Si / e Cq la proposition 3.5 montre que f e S1? quels que soient
m e N et r e R.

2) Si Te$'+, la proposition 1.5 entraîne que T= Dm(t~qg) avec
m, qeN et g eC%. Or / tge Set + appartient à

en raison de la proposition 3.3 et de la formule de Leibniz.

4. Comportement asymptotique au voisinage de l'origine

Soit Sr 00 la réunion des espaces Ssr, ^eR. On peut considérer que
l'appartenance à S'~co caractérise l'ordre de grandeur d'une distribution
au voisinage de l'origine. En effet, le théorème 3.1 montre que cette
appartenance est une propriété du germe à l'origine; d'autre part, l'égalité

tr <f0
00 qui résulte de (2.9) et les propositions 3.4 et 3.5 montrent que

la propriété est voisine des propriétés T - o (C) ou T O (tr)
lorsque t -» + 0.

Exemples. Soit x e C°° (R+) une fonction à support borné égale à 1

au voisinage de 0. Posons X On a X(z) z'1 $ (z), où #
- (Dx) est la transformée de Mellin d'une fonction de (R+) (voir le
théorème 3.1 pour les propriétés de $) et ^ (0) 1. Pour p e C et ke N
posons

(4-0 XP,k (0 tp (log t)k % (0

On a Xp k(z) 9JlxPjfc(z) Xw(z + p), fonction méromorphe de z
avec un pôle d'ordre k + 1 en — p, de partie principale (— l)k k
(z + p)~(k + 1\ De plus, si le support de x est contenu dans ]0, a], quel que
soit m e N,

(4.2) (1 + |z|)m (z + p)k +1 XPik (z) a~RQ 2 est borné pour Re z > -m

Etant donné s réel, on a g ^rs si et seulement si RQp > r.


	3. Théorèmes du type de Paley-Wiener

