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(=D"c “1021,,1 oo ® 0, s

ot 0,,= (="'t (ogs) ! 0/(n D! estla transformee de Mellin
inverse de la fonction z — (z+w)™".

3. THEOREMES DU TYPE DE PALEY-WIENER

THEOREME 3.1.. Soit Fe #,.

1) Fest la transformée de Mellin d’une distribution & support dans
[a™',al (@ > 1) sietseulement si F est entiére et vérifie une inégalité

3.1) IF(2)| < C(+|zhma®?l, zecC,

avec meN et C > 0.

2) F est la transformée de Mellin d’une fonction C® a support dans
[a™ ', a] (a>1) siet seulement si F est entiére et, pour tout me N, il existe
C,, > 0 tel que

(3.2 |F(2)| < C(1+|z])"™al®?l,  zecC.

Démonstration. (Voir aussi [6], pages 3 a 13, [7], théoréme 16, page 272
et [3], théoréme 1.7.7, page 21).

1) Soit T une distribution sur R & support dans [a™ 1, q]. Il existe m
e N tel que T soit d’ordre < m et

(3.3) KT,oy|<M X sup FRIoN

pour tout p € C™ (R,), avec M > 0. Soit y € Z (R, égale a 1 au voisinage
de [a7,a]. On a F(z) = {(T,1° 'y ) et F est entiére. Soit Y € C* (R)
nulle pour ¢ > 3 et égale a 1 pour ¢ < 2. Posons

0. (1) = 1 (Y A a=llyy 1=l g lzly o=t

On a ¢ € C” (R), et comme y, (1) = #*~ ! au voisinage du support de 7,

F(z) = {T, ¢, ). D’aprés (3.3), en majorant les dérivées de ¢_, on obtient

(3.1). | -
Soit F entiére vérifiant (3.1). On a F = MT avec T = NF
( D)m+2 g:b ou
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1
9. () = ———S - F (2) =D dz,
2n 7(s)

v (s) étant la droite Rez = s orientée dans le sens Im z croissant, avec
+ s > 0; cela résulte de la définition de 9 si s > 0, et provient du fait que
g. — g_ est un polyndme en log ¢ de degré <m + 1si s < 0. L’inégalité
(3.1) entraine

92 ()] < A1~

lorsque |s| > 1, A constante > 0. En faisant tendre s vers + o0 ou — o0
on obtient g, () = 0 pour ¢ > a et g_ (1) = 0 pour # < a” ', de sorte

que le support de T est contenu dans [a~ 1 4l
2) Soit ¢ € 2 (R,) une fonction & support dans [a~ 1 a). 1l est clair §
que F = Me. est une fonction entiére et que, pour tout entier k >0,
| Z*F (2) l =

S Do) 1dt| < Agal®el,
-1

a

A, constante positive, d’oui I'inégalité (3.2).
Inversement, si F entiére vérifie (3.2) pour tout me N, on a F = Mo,

2 i

1
ou ¢ (t) = — S t~? F(2) dz est une fonction C®, a support dans
, y(s)
[a~ !, a] daprés 1), c.q.f.d.

EspaCES € ET #. Dans la suite, nous désignerons par & le sous-
espace de L2 (R, ¢t~ ! dt) formé des fonctions & support borné, muni de la
norme

ufng=(Sjlf<t>|2t-1dt)”2, fee.

Il est clair que & € €+ nL* (Ry) nL>(Ry). |
Par exemple, si f est une fonction de carré intégrable a support borné §
telle que | f@ - f (O)I < Ct* lorsque ¢t —» + 0, avec C et « > 0, on
a f €& si et seulement si f (0) = 0.
Le théoréme suivant caractérise I’espace # = IMN&:

THEOREME 3.2. Pour qu’une fonction F soit la transformée de Mellin
d’une fonction fe & a support dans 10, a] (a>0), il faut et il suffit que les
conditions suivantes soient satisfaites :
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1) F est holomorphe dans le demi-plan Re z > 0,

2) la fonction F, :yv> F(x+iy) appartient a L?(R) pour tout x >0
et il existe une constante C > 0 telle que

| F.| < Ca*, pourtout x > 0.
L2(R)
* Si les conditions précédentes sont vérifiées, F, tend vers une limite F
dans L? (R) lorsque x — + 0 et

(3.4 | F. ” \/27E |*f e pour tout x > 0.

Démonstration. (Voir aussi [6], théoréme 5, page 8). Soit feé a

support contenu dans 10, a], a > 0. Pour x = Rez >0, y = Imz, on a
) + o0

F(2)=Mf (2) = Swf ) t*"tdt = S g, (s) €’ ds, avec g, (s)
0 |

= f (%) e = g, (s) e, goe L* (R), g, nulle au voisinage de + oo,
” 9x “ H , x > 0. Autrement dit, la fonction F, est la trans-

formee de Fourier de g.€L'(R) nL?(R) pour x > 0, et la formule de
Plancherel donne (3.4) pour x > 0. Comme g, — g, dans L? (R) lorsque
x — + 0, F, tend vers une limite F, dans L? (R), F, étant la transformée de
Fourier de g,; de plus, la formule (3.4) reste valable pour x = 0. Enfin

1) et 2) sont vérifiés, I'inégalité de 2) avec C = / 2 || £ P résultant de
(3.4). .
Soit F une fonction vérifiant 1) et 2). En vertu du lemme 1.6, pour tout
r>0,ona|F(z)|<C()a*? pour Rez >r, donc Fe#,. Soit
f = NFeé.. Si pe2 R,), comme NF est limite dans 2’ (R,) des
fonctions (2.7), on a

o0 ¢+A/ )
2wl frpd = limS dt\ 0 ()1, () dy .
0 J_4A

A=

Le théoréme de Fubini donne, avec & = Mo,

2 f,0> = [Py, (=»)F.(y)dy,

d’ou, par I'inégalité¢ de Cauchy-Schwarz,
S R A L B
L2

Finalement, compte tenu de (3.4) valable quel que soit x € R pour fremplacé
par ¢ € 2 (R),
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|[<foo>| < M| t*™*¢p]sa”

avec M > 0. En posant § = ¢'/27% ¢ il vient

ey <My L x>0,
L2R )
pour tout Y € 2 (R,). Le théoréme de représentation de Rlesz entraine
alors que t*~1/2 f eL? (R,) et que

S oy | f@ Pt tdr < M?

pour tout x > 0. Lorsque x — oo, cette inégalité implique que le support
de f est contenu dans 10, a]; si x - + 0, elle donne que fe &, c.q.f.d.

Comme application du théoréme précédent, nous allons introduire |
des espaces qui permettront de classer les éléments de & en fonction de
leur régularité et de leur ordre de grandeur au voisinage de 1’origine.

EsPACES #, ET &,. FEtant donné deux nombres réels r et s, nous
désignerons par o, l’ensemble des fonctions Fe #, telles que
(z+r+1)°F(z) = G(z+r), avec Ges = ME; en particulier H#g
= H. Ainsi, si Fe #;, F(z) est holomorphe pour Re z > — r et ’appli- -
cation

' ye(x+iy+r+1)°F(x +iy)
est dans L? (R) pour x > — r.

On a #: C # si et seulement si r’ <r et s <s.

Nous poserons &S = N A; la transformée de Mellin inverse de H#;;

en particulier &g = &.
Dans le cas ou s est un entier, on peut caracterlser &, directement:

PROPOSITION 3.3. Soit m un entier >0 et soit Teé,.

a) Les conditions suivantes sont équivalentes :
(a.l) Teé&,.
@2 t"D'Teé& pour 0<j<m.
@3) I "TVeé. pour 0<j<m.

b) Les conditions suivantes sont équivalentes :
(b.1) Teé& ™
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b2 T =1t ZODj f; avec f;€é.
=

(b3) T= Zo "t B avec hjeé.
=

Démonstration. Compte tenu de la formule de Leibniz et de ’égalité
&, = t' &5, on peut supposer que r = 0. Les équivalences de (a.2) et (a.3)
~ ainsi que de (b.2) et (b.3) découlent du lemme 1.1.

Soit F=IMT. On a Teég < (z+D)"F(z) = G(z) avec GeH
<z Fes pour 0 <j<m< D'Te& pour 0 <j<m.

Si Teé&y™ on a F(z) = (z+1)" G (z) avec Ge #. La formule du

binéme donne (b.2) avec f; = (—1)! <m> NG.
j
Si T vérifie (b.2) avec r =0, on a F(z) = ), (—z) MSf;(2)
j=0

= (1+2)"G(z) avec G(z) = Y, (—z) (1+2)™"Mf;(z) donc Ge H#
i=o
et Te #,", c.q.f.d.

I’appartenance & la réunion &% des espaces &°, reR, caractérise
la régularité d’une distribution. On vérifie en effet que localement, les
éléments de &2 sont dans I’espace de Sobolev H® (R) formé des distri-

A A
butions S sur R telles que (1+|x|?)*/? S (x) soit de carré intégrable, S
étant la transformée de Fourier de S. Nous démontrerons le résultat suivant:

ProroSITION 3.4. Soit s >m + 1/2 avec meN, et reR. Si f
€é,, ona feC"(R,) et

fOW =09 lorsque t— +0
pour 0 <j<m.

Démonstration. On a (+r+1)’Mf (z2) = G(z+r) avec Ge #.
Par suite, pour x > — r,

(__ 1)] AX+ic0
2mi

FO0 = t75 7 z(z41) ... (z+j - 1) G+ (z+r+1) "% dz

x—ioo
fonction continue sur R, pour 0 <j <<m, donc f eC™(R,). Comme

G, :y+ G (x+iy) converge vers G, dans L? (R) lorsque x - + 0, on
a aussi
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f(.i) (t) —

t""S+°°e-,ylogt(""’”(’"“’y Do r=iy=j+D G® |
— (1 +iy)*

ou I'intégrale tend vers O lorsque ¢t - + 0, d’aprés le lemme de Riemann-
Lebesgue. Par conséquent, f9 (1) = o (¢"¥ lorsque ¢ - + 0, c.q.f.d.

Remarque 1. Si s <m + 1/2, &, n’est pas contenu dans C™(R.).
Soit en effet f € & tel que (— D)™ f soit la fonction égale & 1 sur 0, 1]
et nulle sur [1, co[. Il est clair que #"*! f n’appartient pas & C™ (R,)
bien que M@ ! f) () = (z+r+1)"™ 1 appartienne & #5 pour s
<m+ 1/2.

Remarque 2. Si feC™R,),m >0,etsi f9 () = O (¢t"77) lorsque
t - + 0 pour 0 <j <m, il est clair que f € &,  pour tout ' < r, puisque
f9 = ¢t""I h; avec h;e & (proposition 3.3). En général, on ne peut pas
remplacer ' par r: une fonction f € C® (R,) qui est égale & |logz |~1/2
au voisinage de 0 vérifie fY () = o(¢7) lorsque ¢t » + 0 pour 0 <j
< m. Cependant, quel que soit se R, f n’appartient pas a &; en effet,
Mf (z) — Cz~ 12 (C constante # 0) est entiére.

La proposition suivante donne des conditions pour qu’une fonction
de classe C™ ! soit dans &}

PROPOSITION 3.5. Soit m un entier >1,reR e feCm ! (R+)
a support borné telle que t™ " f™ = ge é"
a) Si r<0, ona feé).

b) Sir>m—1, ona fe& sietseulement si P (t)—>0 lorsque
t— + 0 pour O<]<m—1 , '

Q) Si 0<r<m-—1, ona f e@@m si et seulement sii ) (t) ~0
lorsque t — -+ O pour 0<j<r et fMe& sir entier. '

Démonstration. Soit F = Mf et G = Mges#. Par hypothese
MF™) () =(—D)"E-1)(z—-2)...(z—m) F(z—m) = G(z+r—m). On
a f €&, sietseulement si
) -D"(z+1D)"G(z
Go(2) = (241" F(z—r) = — D EHDIOE)

(z=r)(z—-r+1)...(z—r+m—1)

est une fonction de 7.

a) Si r < 0, il est clair que G, € # donc f €&,
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b)Sir>m—1, GoeH si et seulement si G(r—j) = 0 pour 0
<j<m — 1. Puisque f™ =1¢"""g, on apour 0 <j<m—1

e SR G S A
100 =\ e

m—j—1 (_1)m—k-j—1 tk St

; |
= kIl g () du.
2 Tim—k—j—D!

[o0]

t
Mais, si « > 0, S Wl g W) du = — G (@) + o(t). En effet, par I'incga-

lité de Cauchy-Schwarz, lorsque ¢ —» + 0,

»1

| S u*~1 g (u)du

: <S u?*~1 du S g |Pu""du = o (1*%).

0
Par suite
j _ (_1) al e §
(3.5) ff%ﬂ—(m_j_D!G( PN +o),

et G(r—j) = O si et seulement si /P (t) = o (D).

) Si0<r<m-—1, Goe# si et seulement si G(r—j) = 0 pour
0 <j<retz 'Ge# dans le cas ol r est entier. Comme précédemment
I’égalité (3.5) est valable pour 0 <j < r. On a donc G(r—j) = O si et
seulement si £ (t) = o (1), avec 0 <j < r.

Dans le cas ol r est entier, f € & entraine " € é&. Inversement, si
fM =pegetsi fP@F) = o0(1)pour 0 <j < ravecr>1,

_ t (t_u)r—l e
10 =\ SO W = 1)
\ 1 ' -
ol hq (%) =(r—-1)! So(l—s) h(st)ds

appartient a &. Il s’ensuit que F(z—r) = Emho (z) est dans s# donc aussi
G, c.q.f.d.

PropoSITION 3.6. 1) L’intersection des espaces &3, r, sS€R, est égale

a l’ensemble C§ des fonctions C% sur [0, o[, a support borné, plates
en 0.
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2) &, est égal a la réunion des espaces &, r, s € R.

Démonstration. 1) Si fe&m*! avec me N, la proposition 3.4 montre
que f est de classe C™ sur [0, oo et que £ (0) = 0 pour 0 <j < m;
il suffit de prendre m arbitrairement grand pour obtenir f e CS" . |

Si f € Cg, la proposition 3.5 montre que f € &" quels que soient
meN et reR.

2) Si Teé,, la proposition 1.5 entraine que T = D™ (¢t %g) avec
m, qeNetgeC,. Or f =tge& et T = D" (t~@+D f) appartient 2
&_{z+1) en raison de la proposition 3.3 et de la formule de Leibniz.

4. COMPORTEMENT ASYMPTOTIQUE AU VOISINAGE DE L’ORIGINE

Soit &, la réunion des espaces &;, seR. On peut considérer que |
Iappartenance & &, ° caractérise /’ordre de grandeur d’une distribution
au voisinage de I'origine. En effet, le théoréme 3.1 montre que cette appar-
tenance est une propriété¢ du germe a I’origine; d’autre part, I’égalité &,
= 1" &, qui résulte de (2.9) et les propositions 3.4 et 3.5 montrent que
la propriété Te & ® est voisine des propriétés T'=o(t") ou T = O (¢t")
lorsque ¢ —» + 0.

Exemples. Soit y e C* (R;) une fonction & support borné égale a 1
au voisinage de 0. Posons X = My. On a X(2) = z 1 P (2), o § =
— M (Dy) est la transformée de Mellin d’une fonction de 2 (R.) (voir le
théoréme 3.1 pour les propriétés de &) et & (0) = 1. Pour peC et keN .
posons

(4.1) Ko @) = 7 (log ) 1 (1) .

On a X,,(2) =My, (2= X®(z+p), fonction méromorphe de z §§
avec un podle d’ordre £k + 1 en — p, de partie principale (—1)* k!
(z+p)~%** Y, De plus, si le support de x est contenu dans 10, a], quel que
soit m € N,

(42) (A+|z)" @+ p)**' X, (2) a R = est. borné pour Rez > —m .

Etant donné s réel, on a y, ; € &, si et seulement si Re p > r.
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