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S () étant le rectangle x+r —is, x+r +is, x—r +is, x—r —1s, ous>|y|
Si vy est un des cotés du rectangle paralléle a ’axe imaginaire, I'inégalité de
Cauchy-Schwarz donne

S F(w)

w —Z

dw

F(w)

o (s) w —2

dw, o (s) étant le segment x—r +is, x+r+is.

Soit I(s) = S
Par I’inégalité de Cauchy-Schwarz

x+r F ‘ 2d x4+ r du
[NF@ris] ”Sx_,<u—x>2+(s—y>2

1) 2 < S

X —

x+r
<7z;S |F (u+is)|* du ,

o
en supposant | s| >|»| + 1. Par conséquent

T (I P+]I(=9)])ds < 2mr M? .
Il existe donc une suite (s;) convergeant vers + oo et telle que |I (s7) |2
+ | I(—s;)|* tende vers O lorsque j— co. On a donc 2z | F(2) |
<2M (@r)*2 + | 1(sp) | + | 1(—s;) | pour tout j, d’olt le résultat lorsque
J— o

2. LA TRANSFORMATION DE MELLIN ET SON INVERSE

TRANSFORMATION DE MELLIN. Si Te&., soit T; une distribution
a support compact sur R qui prolonge 7. Il existe un entier m > 0 tel que
T, soit d’ordre fini <<m (cf. [7] théoréme 24, page 88). Par conséquent,
la fonction de z donnée par F(z) = { Ty, t3~ ' est définie et holomorphe
pour Re z > m + 1 et elle ne dépend pas du prolongement T'; de T choisi.
En effet, d’une part application z +> %~ ! définit une fonction holomorphe
pour Rez > m + 1, a valeurs dans ’espace des fonctions de classe C™
sur R; d’autre part, si T, est un autre prolongement de 7, pour Re z assez
grand, %! est nul sur le support de T; — T, ainsi que ses dérivées d’ordre
inférieur ou égal & I'ordre de T, — T, (cf. [7] théoréme 28, page 93). La
fonction F est appelée transformée de Mellin de T et notée F = INT.

e
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PROPOSITIQN 21. Si Teé&,, ona DTeé&., et t’Te &L pour tout
peC. De plus \
(2.1) MDT)(z) = — zMT (2),
(2.2 | MAPT)(z) = MT (z+p).
Démonstration. Si Te &, il est clair que DTeé,. Le lemme 1.2

et la proposition 1.5 montrent que t?Te & si p e C.
Soit T'; une distribution 4 support compact, d’ordre < m, qui prolonge

T. Pour Rez>m+ 2, on a zMT(z) = {Ty,zt5 1> = — (T, %>
= — (DT, 1>y = —-Mm (DT) (2), puisque DT, est un prolongement
de DT.

Soit maintenant k& un entier >0 tel que Rep + k > m. Alors ¢2+*
est de classe C™ et t57* T, est un prolongement de S = P t* T ; on a donc,
pour Rez >m + 1, MS(2) = {577,571y = (T, 5Pty
= IMMT (z+p+k). En outre, S = t*¢? T, de sorte que si T, est un pro-
- longement de #” T, ¢* T, est un prolongement de S; par suite, pour Rez
assez grand, MS (2) = (t*T,, 151> = (T, 15771y = M (PT) (z +k).
Finalement, M (¢°T) (z) = MS (z—k) = MT (z+ p), c.q.f.d.

ALGEBRE &,. Si S et T appartiennent 3 & +, on définit la convolution -
S * T de S et T comme la distribution sur R, donnée par

(23)  (S*T,0) =<{S(EOQT®, ¢(s1)>, @ecPR,).

C’est la convolution associée a la structure de groupe multiplicatif de R,. |§
Ona S#*Teé,; en effet, si S, et T, sont des prolongements respectifs J
de S et T, ST est la restriction de S, * T'; définie sur R par une formule
analogue a (2.3). Muni de la convolution, & est une algébre commutative
sur le corps C. ‘

ALGEBRE #,. Nous considérerons des fonctions holomorphes définies
dans des domaines du plan C contenant des demi-plans du type Re z
> r (r € R). Deux telles fonctions seront identifiées si elles coincident dans
un tel demi-plan. Nous désignerons par 5, ’espace des (classes de) fonc-
tions F du type précédent vérifiant une inégalité

(2.4) |F(z)| < C+|z)"a®*, Re z > r,
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ol les constantes C > 0, me Z, a > 0 et re R dépendent de F. ", est
une algébre pour le prodult FG:2—- F(z2)G(2), F, Ge A ,. |

Par exemple, si T' € & ., la transformée de Mellin F MTde T appartlent

4 # .. En effet, si le support de T est contenu dans 10, al, il existe f € C;

nulle pour t >a et meN tels que T = f (m) (proposmon 1.5); par suite

MT (z) = (=1)"(z—1)(z=2) ... (z—m) Sof ® £ Ldi

vérifie (2.4) avec r > m.
On vérifie sans peine que M est un homomorphisme de I’algébre é"+
dans I’algebre # ..

TRANSFORMATION DE MELLIN INVERSE. Soit Fe ., vérifiant (2.4).
Si j est un entier >0 tel que j > m + 1, posons pour ¢ > 0

1 :
(2.5) K,F(t) = —; S t7?F(z)z 'dz,
21 ys)

ol v (s) désigne la droite Rez = s orientée dans le sens Im z croissant,
avec s > r (on peut supposer r > 0). Il est clair que K;F est une fonction
continue sur R, ne dépendant pas de s > r. D’autre part, si x > r,

+ o0
2nt* K;F (t) = S e_iy1°?’F(x+iy) (x+iy)~dy,
ou I'intégrale tend vers O lorsque ¢ — + 0, d’aprés le lemme de Riemann-
Lebesgue. I s’ensuit que #*KF est continue sur R, si x > r. Enfin, d’aprés
(2.4), lKj F (z‘)] < M (a/t)* pour x assez grand, ou M est une constante
positive; par conséquent, en faisant tendre x vers I'infini, on obtient que
K;F (t) est nul pour ¢t > a et K;Fe C?.
On définit donc un élément NF de & .. en posant, pour j > m+1,

(2.6) MF = (—D) K,F,
)
et MF ne dépend pas de j puisque, en vertu de (2.5), — DK;,F = K;F.

La distribution NF est appelée transformée de Mellin inverse de F et N
définit une application linéaire de ., dans &..

D’aprés (2.5), K;F (t) est limite uniforme sur tout compact de R, des
fonctions

stid
> —S t7*F(2)z /dz
27” s—id
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lorsque A tend vers I’infini, avec s > r. Il en résulte que NF est limite dans
2' (R,) des fonctions continues

1 s+id
2.7 t> — S t7*F(z)dz,
| 271 Js-ia

lorsque A tend vers linfini, s > 7.

PrROPOSITION 2.2. Si Fes# ., les fonctions zw>zF(z) et 2z
F(z+p), avec peC, appartiennent a # .. De plus

(2.8) N[zF(z2)] = —DR[F(2)],
(2.9 N[F(z+p)] = t* R[F(2)], peC.

Démonstration. 1l est clair que 5, est invariant par multiplication
par z et par translation dans C. Pour j assez grand, on a d’aprés (2.5)

N[zF(2)] = (DY K14 [2F (2)] = (—DY "' K; [F (2)]
= — DR[F(2)].

Pour k et j assez grands, on a de méme

N[F@)] = (- D)k, [F (2)] = (D) (—D+p) K, [(z+p)'F (2)]
= (=D+py K, [(z+p) ' F(2)],
et par suite

N[F(@z+p)] = (—D+p)Y K, [z+p)7 Fz+p)],

d’ol, en faisant le changement de variable z + p > z dans l'intégrale (2.5)
donnant K,
| CN[F(@E+p] = (—D+py (t*K;[F(2)])
= t?(=DyK;[F(2)] = t*R[F(2)],
c.q.f.d.

THEOREME 2.3. La transformation de Mellin IR est un isomorphisme
de l'algébre & sur l’algébre # . d’inverse N.

Démonstration. On sait déja que MM : &, — #, est un homomor-

phisme. ,
Montrons que NI est I'identité sur &,. Si Te &y, ona T = (—D)"
(t7 f) avec met geN et f € C? (proposition 1.5). Par suite (propo-
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sition 2.1), MT (z) = z" M S (z—q) et (proposition 2.2) RIMT = (— D)™
(1 NWf). 11 suffit donc de vérifier que MM f = f pour fe CY. Mais
alors I f satisfait & I'inégalité (2. 4) avec m = 0 et M f D*K,M f,
c’est-a-dire, avec x > 0,

+® MSf (x+iy)
= D? tTx Y d
2 R S B iy
5 » +o0 o) 7:—x—iy Sx+iy—1
=D d ds,
Vo, e 7O

intégrales absolument convergentes. En intégrant d’abord par rapport a y
on obtient

__1— + oo ( / )x+1y dy _ 0 Si S < t,
2 ) o (x+iy)? log(s/t) si s>t.

On a donc NMf = D? S log (s/t) f(s)s tds = f.
t
Montrons que M est 'identité sur # . Si Fe # ., ona F(z) = z"G (2)
ou G est holomorphe pour Rez > r et

|G| < CA+]|z)7?a™**, Rez>r,
C,aetr > 0,meN. Il s’ensuit que NF = (— D)™ NG et MNF = z" MNRG

(propositions 2.2 et 2.1), d’ou le résultat si MNG = G. Or NG (¢) =

2mi
[y %G (2)dz, y(u) droite Rez = u avec u > r. Par suite, NG (¢)
=1t7%g(t) avec 2ng(t) = [t " G(u+iv)dy. On a geC3, suppg
= 10, a] d’o

a

MNG (z) = S =4l g () dt.

0
Pour x > u > r on a donc

a

MNG (x +iy) = S T g (1) di

0
1 » »+ 00

= —\ dtS (*r-u==l G (y +iv) dv
2n o

ax+iy—u—iv

+ o0
= ——§ : — G (u+iv)dv
J—o X +1y —u —1v
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GWw)a*~"

w—2z

= résidu au point z de la fonction w
= G (x+iy).

Remarques. 1) 11 résulte de ce qui précéde que si Te &, et F = MT
€ # ., le support de T est contenu dans ]0, c] si et seulement si F vérifie
une inégalité (2.4) avec a = c.

2) Si T est la restriction & R, d’une distribution d’ordre <7 sur R,
F vérifie (2.4) avec m = n. Inversement si F vérifie (2.4), T = (- D)"*?
Ky o F est d’ordre <<m+2. Des résultats plus précis seront obtenus au
paragraphe suivant. ‘

Etant donné une distribution T sur R, on désigne par T, 'homothé-
tique de T dans le rapport a > 0; avec la notation fonctionnelle, on a J
T(t) = T(a"'t). De méme T* est la distribution définie par 7%(¢) = T . B
On démontre sans difficulté la proposition suivante:

PROPOSITION 2.4. Soit a > 0. Si Fei#, les fonctions a*F(2), |
z , ‘

F (—) et F'(z) appartiennent aussi @ # .. Si Teé., les distributions
a ¥

T, T* et (logt) T appartiennent aussid &, etl’ona
1
MT,(z) = a* MT (2), MT*(2) = — smT(f>,
a a
d
M[(og ) T](2) = — SIRT ().

Exemples. 1) La mesure de Dirac 3, au point 1 est I'unité de I’algébre §
&y . M3, = 1 est I'unité de I'algébre # . |

2) Dans 4, la multiplication par —z est un opérateur inversible dont
I'inverse est la multiplication par — z~!. On en déduit que I’opérateur
différentiel D dans &, admet un inverse D~ ! qui est la convolution par §
N(—z7)=—0,avec 0(t) =1si0<zt<1let =0siz>1 En fait
D™ fest la primitive de z~! f & support borné. )

3) Plus généralement, P (z) = ¢ (z—z,)" ... (z—z,)"* étant un polynéme
de degré m = n, + ... + n, >1 & zéros Z15 «.s Z) distincts, la multiplica-
tion par P (—z) dans 9? . est un opérateur d’inverse P (—z)~ 1. Par trans-
formation de Mellin inverse, on en déduit que 1’opérateur différentiel
P (D) est inversible dans & : P (D)™ ! est la convolution par
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(=D"c “1021,,1 oo ® 0, s

ot 0,,= (="'t (ogs) ! 0/(n D! estla transformee de Mellin
inverse de la fonction z — (z+w)™".

3. THEOREMES DU TYPE DE PALEY-WIENER

THEOREME 3.1.. Soit Fe #,.

1) Fest la transformée de Mellin d’une distribution & support dans
[a™',al (@ > 1) sietseulement si F est entiére et vérifie une inégalité

3.1) IF(2)| < C(+|zhma®?l, zecC,

avec meN et C > 0.

2) F est la transformée de Mellin d’une fonction C® a support dans
[a™ ', a] (a>1) siet seulement si F est entiére et, pour tout me N, il existe
C,, > 0 tel que

(3.2 |F(2)| < C(1+|z])"™al®?l,  zecC.

Démonstration. (Voir aussi [6], pages 3 a 13, [7], théoréme 16, page 272
et [3], théoréme 1.7.7, page 21).

1) Soit T une distribution sur R & support dans [a™ 1, q]. Il existe m
e N tel que T soit d’ordre < m et

(3.3) KT,oy|<M X sup FRIoN

pour tout p € C™ (R,), avec M > 0. Soit y € Z (R, égale a 1 au voisinage
de [a7,a]. On a F(z) = {(T,1° 'y ) et F est entiére. Soit Y € C* (R)
nulle pour ¢ > 3 et égale a 1 pour ¢ < 2. Posons

0. (1) = 1 (Y A a=llyy 1=l g lzly o=t

On a ¢ € C” (R), et comme y, (1) = #*~ ! au voisinage du support de 7,

F(z) = {T, ¢, ). D’aprés (3.3), en majorant les dérivées de ¢_, on obtient

(3.1). | -
Soit F entiére vérifiant (3.1). On a F = MT avec T = NF
( D)m+2 g:b ou
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