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8 (s) étant le rectangle x + r — is, x + r +is, x — r + is, x — r — is, où s > | y |.

Si y est un des côtés du rectangle parallèle à l'axe imaginaire, l'inégalité de

Cauchy-Schwarz donne

r fO) dw < M2
C —^—

Jy w - z J r2 + (v-}>)2

Soit I(s) - --- - z/w, <7 (s) étant le segment x-z* + z's, x+/* + «.
J«r(S)W-Z

Par l'inégalité de Cau,chy-Schwarz

r+r, „ r+r <*«

x + r

< n\| F (u + zs) |2 dn
J jc —r

en supposant | s | > | y | + L Par conséquent

J
M + i (11 I2 +1~s) !2) ds < 27ir M2 '

Il existe donc une suite (sj) convergeant vers + oo et telle que 11(sj) \2

+ | I (-sj) \2 tende vers 0 lorsque j -> co. On a donc 2n F(z) |

< 2 M {njr)112 + 11 (sj) | + 11 (-sj) | pour tout j, d'où le résultat lorsque

j -> oo

2. La transformation de Mellin et son inverse

Transformation de Mellin. Si Te$'+, soit Tt une distribution
à support compact sur R qui prolonge T. Il existe un entier m > 0 tel que

T1 soit d'ordre fini <m (cf. [7] théorème 24, page 88). Par conséquent,

la fonction de z donnée par F(z) < Tu /+_1 > est définie et holomorphe

pour Re z > m + 1 et elle ne dépend pas du prolongement T1 de T choisi.

En effet, d'une part l'application z \-+ t +"1 définit une fonction holomorphe

pour Rez > m + 1, à valeurs dans l'espace des fonctions de classe Cm

sur R; d'autre part, si T2 est un autre prolongement de T, pour Re z assez

grand, / +_1 est nul sur le support de T1 — T2 ainsi que ses dérivées d'ordre
inférieur ou égal à l'ordre de Tx — T2 (cf. [7] théorème 28, page 93). La
fonction F est appelée transformée de Mellin de T et notée F 9KT.
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Proposition 2.1. Si TeS'+, on a DTe £+ et pour tout
p e C. De plus

Démonstration. Si Te ê'+, il est clair que DTe Le lemme 1.2
et la proposition 1.5 montrent que tvTe $si C.

Soit T! une distribution à support compact, d'ordre < m, qui prolonge
T. Pour Re z > m+ 2, on a z9Jtr(z) < Tu zt2'1 > - < + >

— < DTx,t\ 1
> — 9R (DF) (z), puisque DTl est un prolongement

de DT.
Soit maintenant kun entier > 0 tel que R Alors tp++k

est de classe Cm et tp++kTx est un prolongement de tp+k T; on a donc,
pour Re z > m+ 1, 9JIS (z) < tp++kT}, > <

W.T(z+p+k). En outre, S — tk tpde sorte que si 72 est un
prolongement de tpT,tkT2est un prolongement de S; par suite, pour Rez
assez grand, ms (z) < tkT2,t2'1 > < t++k~l > 9R (t"T) (z + k).
Finalement, 9J1 (tpT) (z) 3RS(z-k) W.T(z + p), c.q.f.d.

Algèbre SSi Set Tappartiennent à on définit la convolution
S* Tde Set Tcomme la distribution sur R+ donnée par

(2.3) < S* r, Ç) > < S (s) ® T (0 Ç> (sf) > <pe@(R+)

C'est la convolution associée à la structure de groupe multiplicatif de R+.
On a S * T e $+\ en effet, si 5*| et 7) sont des prolongements respectifs
de Set T, S*Test la restriction de S1 *Tt définie sur R par une formule
analogue à (2.3). Muni de la convolution, + est une algèbre' commutative
sur le corps C.

Algèbre +. Nous considérerons des fonctions holomorphes définies
dans des domaines du plan C contenant des demi-plans du type Re z
> r(r e R). Deux telles fonctions seront identifiées si elles coïncident dans
un tel demi-plan. Nous désignerons par l'espace des (classes de) fonctions

F du type précédent vérifiant une inégalité

(2.1)

(2.2)

9W(DT)(z) - z9WT(z),

9R(fpT)(z) 9JIT (z

(2.4) | F (z) | < C(1 + |z|)maRe z Re z > r,
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où les constantes C > 0, m e Z, a > 0 et r e R dépendent de F. + est

une algèbre pour le produit FG : z -> F(z) G (z), F, G e 34?+.

Par exemple, si Te S+, la transformée de Mellin F SOITde Tappartient

à +. En effet, si le support de T est contenu dans ]0, a], il existe f e C+

nulle pour t et weN tels que T — /(m) (proposition 1.5); par suite

931T (z) (-l)m(z-l)(z-2)...(z-m) (0 f~m~l dt

vérifie (2.4) avec r > m.

On vérifie sans peine que SOI est un homomorphisme de l'algèbre S +

dans l'algèbre 3tf+.

Transformation de Mellin inverse. Soit F e 3tf + vérifiant (2.4).

Si j est un entier > 0 tel que j > m + 1, posons pour t > 0

(2.5) KjF (t) -^\ t~zF(z)z-Jdz,
27U J y(S)

où y (s) désigne la droite Re z s orientée dans le sens Im z croissant,

avec s > r (on peut supposer r > 0). Il est clair que KjF est une fonction

continue .sur R+ ne dépendant pas de s > r. D'autre part, si x: > r,

r* + oo

2n txKjF(0V e~iyIog' + + iy)~J dy
J — 00

où l'intégrale tend vers 0 lorsque t-»•+ 0, d'après le lemme de Riemann-

Lebesgue. Il s'ensuit que txKjF est continue sur R+ si x > r. Enfin, d'après

(2.4), | Kj(t) | < M (a/t)x pour x assez grand, où M est une constante

positive; par conséquent, en faisant tendre x vers l'infini, on obtient que

KjF(t) est nul pour t > a et KjF e C+.
On définit donc un élément SftF de $+ en posant, pour j > m+1,

(2.6) 31F —D)J KjF
ï

et 31F ne dépend pas de j puisque, en vertu de (2.5), — DKj+1F KjF.
La distribution 9LF est appelée transformée de Mellin inverse de F et 5R

définit une application linéaire de + dans $'+.

D'après (2.5), KjF(t) est limite uniforme sur tout compact de R+ des

fonctions
r»s + iA

11-> \ t~zF(z)z~jdz
2ni Js-iA
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lorsque A tend vers l'infini, avec s > r. Il en résulte que SftF est limite dans

(R+) des fonctions continues

(2.7) —\ (z)
2?n Js_m

lorsque A tend vers l'infini, s > r.

Proposition 2.2. Si Fe les fonctions z\->zF(z) et zi->
F(z + p), avec pe C, appartiennent à +. Déplus

(2.8) $l[zF(zy] -DSR[F(z)],

(2.9) H[F(z+p)] *'»[F(z)], peC.
Démonstration. Il est clair que ^f+ est invariant par multiplication

par z et par translation dans C. Pour j assez grand, on a d'après (2.5)

3t \zF(zj\ Kj+1 \z(z)](-/>)>+1 [F(z)]

- Z>3t [F

Pour k et j assez grands, on a de même

31 [F(z)] (~D)kKk[F(z)](-Df(-\_{z+p)^F{zj\
(-K + pyZotCz + ^^FCz)],

et par suite

3t[F(z + />)] (-2) + ^yJ5:0[(z +^F(z+ /i)],

d'où, en faisant le changement de variable z + p h>- z dans l'intégrale (2.5)

donnant K0,
3 l[F(z+p]= (-D + Py(t>Kj[F(z)])'

t"(-Dy Kj [. F(z)] > 31 (z)]
c.q.f.d.

Théorème 2.3. La transformation de Mellin 931 est un isomorphisme

de l'algèbre SJ'+ sur l'algèbre 2/F + d'inverse 31.

Démonstration. On sait déjà que 331 : ê'+ -* + est un homomor-

phisme.
Montrons que 31931 est l'identité sur Si on a (-

(it~4 /) avec m et geN et / e C° (proposition 1.5). Par suite (propo-
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sition 2.1), 931F (z) zm931/ (z-q)et (proposition 2.2) SOTT (.~D)m

(t~« 91931/). Il suffit donc de vérifier que 91931/ =/pour/e C°. Mais

alors 931/ satisfait à l'inégalité (2.4) avec 0 et 91931/ D2K2Mf,
c'est-à-dire, avec x > 0,

C +00 931/
2 n91931/D \ r*"" ; 2 dy

J_0O (^+îy)2
+oo /»oo f—x — iy „x + iy— 1

-"•LH-ÖTm*-'«*-
intégrales absolument convergentes. En intégrant d'abord par rapport à y
on obtient

1 f +co
J.. dy f 0 si <

\ (sltY y—— <

2nj-® (x + iy)2 1 log (s/0 si s>t.
r» oo

On a donc 91931/ D2\log (s/t) f (s) s"1 ds f-

Montrons que 93191 est l'identité sur +. Si e +, on a (z) zmG(z)

où G est holomorphe pour Re z > r et

| G(z)\<C(l + |z|)-2aRez, Re z > r,

C, a et r > 0, me N. Il s'ensuit que 91F - D)m 91G et 93Î9ÎF zm 93191G

1

(propositions 2.2 et 2.1), d'où le résultat si 93191(7 — G. Or 91G (t) — ——72ni

jy(u) t~z G (z) dz, y (m) droite Rez avec Par suite, 91(7 (/)
t~" g (t) avec 2ng (t)J (~iv G (u + iv)dv.Ona g e C+, supp g

c ]0, a] d'où

93l91G(z) ^ f-"-1 g(t)dt.

Pour x > u > r on a donc

9319ÎG(x-H» jj g (t)

^ ça /» + 00

— \ dt\ tx+iy-u1 (U+ÎV) dv
Jo J-«,

1 p + 0° ßX + iy — u — iv

\ G (u + iv) dv
j-oo x + iy — u — iv



— 294 —

résidu au point z de la fonction w ^ w - z
G (x + iy)

Remarques. 1) Il résulte de ce qui précède que si TeS+ et F 3DIT

e + le support de T est contenu dans ]0, c] si et seulement si F vérifie
une inégalité (2.4) avec a c.

2) Si T est la restriction à R+ d'une distribution d'ordre < w sur R,
F vérifie (2.4) avec m n. Inversement si F vérifie (2.4), T (- D)m + 2

Km+2F est d'ordre <m + 2. Des résultats plus précis seront obtenus au
paragraphe suivant.

Etant donné une distribution T sur R+, on désigne par Ta l'homothé-
tique de T dans le rapport a > 0; avec la notation fonctionnelle, on a

Ta(t) T(a~xt). De même Ta est la distribution définie par T\t) T(ta).
On démontre sans difficulté la proposition suivante:

Proposition 2.4. Soit a > 0. Si Fe + les fonctions az F (z),

et F' {z) appartiennent aussi à +. Si Te +, les distributions

Ta, Ta et (log t) T appartiennent aussi à et l'on a

(z) azmT(z) WIT" (z) ~
a \aj

9K[(log0T](z) =^-3KT(z).

Exemples. 1) La mesure de Dirac au point 1 est l'unité de l'algèbre
$+ 301^! 1 est l'unité de l'algèbre +.

2) Dans +, la multiplication par -z est un opérateur inversible dont
l'inverse est la multiplication par - z"1. On en déduit que l'opérateur
différentiel D dans ê+ admet un inverse D-1 qui est la convolution par

(-z'1) - 6, avec 6 (t) 1 si 0 < t < 1 et 0 si 1. En fait
D"1 / est la primitive de t~1fk support borné.

3) Plus généralement, P (z) c (z-zff1... (z-zk)nk étant un polynôme
de degré m nt + +/2fc>là zéros z1?..., zk distincts, la multiplication

par P {-z) dans + est un opérateur d'inverse P (-z)"1. Par
transformation de Mellin inverse, on en déduit que l'opérateur différentiel
P (D) est inversible dans S + : P (D) ~1 est la convolution par



— c
^ 0 * * 0

V L) L uz\,ni ••• zk>nk '

où 0wn (-1)"-1 *w(log 0n_1 0/(« — 1) est la transformée de Mellin
inverse de la fonction z (z +w)~n.

3. Théorèmes du type de Paley-Wiener

Théorème 3.1.. Soit Fe 34?+.

1 F est la transformée de Mellin d'une distribution à support dans

[a~a] (a > 1) si et seulement si F est entière et vérifie une inégalité

(3.1) \F(z)\<C(l+ |z|)"a'R"l, zeC,

avec me N et C > 0.

2) F est la transformée de Mellin d'une fonction C°° à support dans

[fl~1,fl](«>l) si et seulement si F est entière et, pour tout me N, il existe
Cm> 0 tel que

(3.2) \F(z)\<Cm(l+ |z|)-malRezl, zeC.

Démonstration. (Voir aussi [6], pages 3 à 13, [7], théorème 16, page 272
et [3], théorème 1.7.7, page 21).

1) Soit T une distribution sur R à support dans [a~ a]. Il existe m
e N tel que T soit d'ordre < met

m

(3.3) [<T,<p>|<M £ sup | (pu) (t) I

j=0 t

pour tout cpeCm (R+), avec M>0. Soit (R+) égale à 1 au voisinage
de [a-1, a]. On a F(z)< T, Zz_1/ > et est entière. Soit e C00 (R)
nulle pour t > 3 et égale à 1 pourt<2. Posons

<PZ(0 X(0«A(i|z| a"|2|)i/r(t~|z| a~|z|)f_1.

On açi.e C00 (R), et comme 1

au voisinage du support de T,
F(z) T, <pz D'après (3.3), en majorant les dérivées de on obtient
(3.1).

Soit F entière vérifiant (3.1). On a WT avec T 9tF
(-D)m+2 öf±, où
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